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Abstract

This Phase I Strategic Technology Transfer Report (STTR) final report summarizes the
development of a prototype interactive software environment, SpecLab, for analyzing non-
stationary processes that admit local power-law representations. Standard spectral analysis
procedures assume stationarity, whereas most naturally occuring processes admit random
departures from strict stationarity. SpecLab estimates and synthesizes the non-stationary
process by allowing both the power-law parameters and the power-law scale range to vary
over a data segmentation chosen interactively by the user. The SpecLab procedures are
accessible via a graphical user interface that guides the user through the steps involved in
selecting data segmentations and executing the estimation procedures.

In its final form SpecLab will provides efficient user access to leading-edge analysis
procedures for non-stationary processes. SpecLab is also configured to provide reproducible
research that would ordinarily be available only as text, equations, and graphs. The Phase
1 prototype demonsrates all the essential features of a marketable software product to be
developed under a Phase II effort.

The report is organized as follows. Chapter 1 provides introductory background infor-
mation and summarizes the developmental Phase I accomplishments against the content
of the original plan. Chapter 2 provides a detailed functional description of the prototype
software that comprises SpecLab Version 1. Chapter 3 summarizes the proposed Phase II
STTR effort that will develop the final SpecLab product. Chapter 4 reproduces the paper
“Wavelet Based Estimation of Local Kolmogorov Turbulence,” by G. Papanicolaou and K.
Sglna, which has bee submitted for publication. The paper summarizes the theoretical un-
derpinnings of SpecLab and demonstrates the reproducible research capability. Chapter 5
reviews the relation of standard spectral analysis procedures and wavelet-based estimation.
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Chapter 1

SpecLab Overview

1.1 Introduction

Stochastic models that incorporate non-stationary structure through long-range correlations
have been the focus of much attention. Such models have been used to analyze communi-
cations data involving local area networks, video, wide area networks, and common channel
signaling. In geophysics long-range dependencies have been found in the fluctuations of
parameters that characterize the earth’s crust. Finally, stochastic models that incorporate
long-range dependence are fundamental in the analysis of turbulent flow data. This latter
application provided the focus of and motivation for developing SpecLab.

The theory of stationary stochastic processes is well developed, but deviations from sta-
tionarity are crucial in the aforementioned applications and in many other, if not most, ap-
plications that involve stochastic processes. Yet, modeling and estimation of non-stationary
processes is neither well developed nor an integral part of mainstream data analysis proce-
dures. SpecLab makes extensive use of the wavelet transform, to provide spatially localized
information about the essential frequency content of the data. An important objective of the
SpecLab development is to make this recent progress in the development of practical meth-
ods for dealing with non-stationary long-range dependent processes available and accessible
to a broad spectrum of potential users.

To achieve this objective, we have structured SpecLab as an interactive software envi-
ronment for data analysis, estimation and synthesis of local power-law processes, which are
described in more detail below and in Chapter 4. Local power-laws provide a robust, well
understood model for the development. The interactive structure of SpecLab allows data
exploration by identifying a representative power-law structure and synthesizing realizations
of the data from the estimated model parameters. SpecLab also serves as a learning en-
vironment for fractals, multifractals and local power laws in general. Finally, it serves as
a tool for reproducible research in the subject area. Reproducible research is intended to
make the data and the analysis procedures that underlie research reports available along
with the textual and graphic descriptors.

1.2 Local power-law processes

Fractional Brownian motion (fBm) represents a local power-law process in its simplest form.
Fractional Brownian motion, By, is a non-stationary Gaussian process with stationary in-
crements. The variance of the stationary increment process is characterized by the structure



function
E[(Bg(z) - By(z — Az))*] = o°Az]*H. (1.1)

The Hurst exponent H determines the correlation distance for the increments of the pro-
cess while o2 establishes the absolute level of the correlation. Ordinary Brownian motion
corresponds to H = 1/2 and its consecutive increments can be shown to be independent.
Increasing and decreasing values of the Hurst exponent correspond to positive and negative
correlations, respectively (see Section 4.2). Fractional Brownian motion is self-similar since
By (z) and aff By (z/a) have the same distributions. The process is essentially invariant
with respect to scaling and, thus, contains structural features on all scales. This attribute
reflects the long-range dependence aspect of the process. Although the structure function
(1.1) has a power-law form, the complementary spectral-domain power law Cw™(H+1) ig
the source of the definition. The spectral strength C' is related to the Hurst exponent and
o (see Chapter 5).

The local power-law model used in SpecLab generalizes the fBm model in two ways.
First, the power law parameters ¢ and H are not constant, but vary slowly with respect
to location z. These variations are modeled as secondary stochastic processes. Second, the
model (1.1) is applied only over a subset of scales: T;, < T < Tou, which is called the
inertial range in turbulence theory. Turbulence theory is an important application of the
fBm model. Kolmogorov’s scaling law yields a spectral index for temperature fluctuations
that corresponds to H = 1/3 in the inertial range. However, real data typically show a
multifractal behavior as manifest by variations in ¢ and H as well as variations in the
inertial range itself. SpecLab is designed to estimate these variations.

Selection of an appropriate bias-variance trade-off is critical to the estimation procedure.
For example, if the mean power-law parameters are estimated over segments of fixed length,
the fluctuations in the estimate decrease with the length of the segments; however, the
bias increases with the length of the segments since intrinsic variations in the power-law
parameters are smoothed out. The local power-law model and the scheme designed to
handle the above estimation problem are described in more detail in Chapter 4.

1.3 Summary of Phase I STTR Effort

In our Phase I STTR proposal the following classes of analysis routines were identified as
the functional units of a viable software environment for analyzing non-stationary power-law
processes.

Data analysis and simulation

These are basic routines that transform the data, perform wavelet scale-filtering, and
display the data in various ways. This set of procedures also contains routines that
simulate local power-law processes. The most elaborate of these routines is the fBm
simulator.

Scale spectra estimation

These are routines that analyze the transformed data obtained from the basic analysis
and simulation procedures. The collection includes routines that estimate scale spec-
tra, the inertial range, and the power-law parameters. Scale spectra are described in
4.2.2. Note that the power-law parameter estimates conain an estimation error that
depends on the segmentation of the data vector. This error is approximately removed
by the filter described in Section 4.4.



Segmentation analysis

The first group of routines in this set is designed to extract an optimal smoothing
of the power law parameters derived from the scale spectra associated with a given
segmentation. The smoothing is based on an estimate of the spatial correlation of these
parameters over segments, as described in Section 4.4.3. SpecLab includes tools that
support the estimation of the structure function that defines the spatial correlation
for a given power-law process realization.

The second group of routines in this set provides guidelines for choosing an optimal
prior segmentation of the signal. The optimal segmentation balances bias and variance
as discussed in the introductory description.

Fourier spectral estimation

For completeness and as a means of relating the SpecLab analysis to results obtained
from conventional analyses, standard spectral analysis routines are included. The
relations are summarized in Chapter 5.

Interactive interface and intermediate level routines

This is a graphical user interface (GUI) that allows the user to apply SpecLab routines
in a user-friendly way. Intermediate-level routines that carry out complete subtasks
like optimal smoothing of spectral parameters are invoked by the GUIL The interme-
diate level routines make it convenient for the user to identify the key computational
procedures in SpecLab and how they can be tailored toward specialized applications.

Demos

These are Matlab demonstration scripts that perform end-to-end analyses of specific
data sets. They serve as an introduction to SpecLab and provide the SpecLab user
with practice exercises to explore its capabilities.

Our Phase I plan has been successfully completed. The SpecLab prototype software
provides an interactive Matlab-based software environment for analysis of local power-law
processes. Users can select sample data sets, generate synthetic data sets, or import data
of their own choosing. SpecLab procedures will display the input data, its spectrum, and
various parameters that will assist in the subsequent processing. The package is designed to
provide the user with a systematic method for identifying appropriate inertial ranges and the
intrinsic variation in the power-law parameters. The SpecLab prototype developed under the
Phase I STTR uses Matlab’s GUI facilities and Matlab’s system for on-line documentation
and help. It requires both Matlab and the Wavelet Tool Box, but, under the proposed Phase
IT effort, stand-alone Unix and PC versions will be developed.

The SpecLab estimation procedures have been demonstrated to work well both with real
and synthetic data. Moreover, all of the results discussed in Section 4 can be reproduced
with SpecLab, which demonstrates its reproducible research capability. SpecLab has been
implemented with a GUI This task was deemed sufficiently important that we accelerated
the development beyond the original Phase I plan.

Functions that have not yet been implemented include (i) Adaptation, which is a pro-
cedure to help the user select a prior segmentation, (ii) Measurement noise, which is a
procedure that quantifies measurement noise in the data, and (iii) Spectral comparison. The
material described in Chapter 5 covers (iii). The incorporation of these remaining functions
is discussed in Chapter 3.

Ut



Chapter 2

SpecLab Version I

2.1 Introduction

SpecLab is a Matlab-based prototype software environment designed to illustrate the es-
sential elements of an interactive analysis tool for non-stationary processes. It is based on
the work done by G. Papanicolaou and K. Sglna with the collaboration of V. Kruger and
C. Rino of Vista Research and D. Washburn of the Air Force Lab at Kirtland Air Force
Base. SpecLab was developed and written by K. Sglna. The software as described below
is available via anonymous ftp upon written request to the authors. The remainder of this
section takes the form of a preliminary user’s guide for SpecLab Phase I.

2.2 Running SpecLab

SpecLab is written in interactive Matlab version 5.3. This user’s guide assumes that the user
is running Matlab and is familiar with its operation and data structures. It is also necessary
to have the Matlab Wavelet Toolbox installed. SpecLab will run under the Unix/Linux or
the PC/NT versions of Matlab. The startup script will define the appropriate environment.
In the remainder of this section we assume that the SpecLab directory has been downloaded
and uncompressed.

With Matlab running, change directories to ‘SpecLab/Lab’ to set up the program en-
vironment. The procedure is the same for Linux or PC versions. To start SpecLab type
‘SpecLab’.



2.2.1 Reading or simulating a data vector

After typing SpecLab in Matlab the user will be presented with the following menu:

CHOOSE INPUT:

HELP

BINARY file with data-vector

ASCII file with data vector

SIMULATE a process

DEMO

QUIT

The first option initiates an on-line help utility. The second and third options load existing
binary or ASCII files. The fourth option allows the user to synthesize a data vector with
prescribed local power-law characteristics. The demo option will walk the user through the
various processing steps to illustrate the functional elements of SpecLab.

For the second or third options a menu appears that identifies the following precomputed
data vectors:

e pure Brownian motion

e Brownian motion with tapered spectrum

¢ a pure Kolmogorov process with H = 1/3

e local Brownian motion

e typical aerothermal data (the data set described in Chapter 4)

The user can alternatively specify the name of a file that contains data stored as a sequence
of numbers in a one-column format. The routines implementing file communication are
located in subdirectory ‘SpecLab/fileio.’

The simulation option initiates a sequence of menus that input the following local power-
law parameters:

¢ length of data vector

e inner scale

e outer scale

e correlation length of parameter variations
e mean Hurst exponent

e fluctuations of Hurst exponent H

o fluctuations of the log intercept log{a?)

The parameters H and ¢* can be chosen to be deterministic or random.
Finally, choosing the demo option initiates a workout that illustrates the estimation of
a local power-law process, as described in Section 2.5.



2.2.2 Analyzing and plotting data

Once SpecLab has loaded or synthesized a data vector, the user is presented with a menu that
identifies the various procedures that can be performed on the data vector as summarized
below:

CHOOSE INPUT:

HELP

CHOOSE segmentation

ESTIMATE inertial range

ESTIMATE model for power law parameters

PLOT process

PLOT wavelets

PLOT scale spectrum (color)

PLOT scale spectrum {graphs)

PLOT power law parameters

PLOT smoothed power law parameters

PRINT current plot

SAVE current data

FILTER data

RETURN to input menu

QUIT




As a guide to the choices, recall that estimating the local power-law model parameters
involves three steps:

(i) Segmentation of the raw data vector into a specified number of equal-length segments.

(ii) Estimation of inertial range for each segment and of the power-law parameters for each
segment.

(iii) Estimation of the structure-function model that characterizes the correlation of the of
the power-law parameters for the segmentation.

Selecting the second, third, and fourth entries in sequence carries out these operations.
‘The main menu also has a number of options for plotting the data that can be executed
before and during the power-law parameter estimation. The action choices are described in
more detail below.

(i) Segment the data

Selecting the segmentation option initiates a secondary menu with the following choices:

(a) Enter the number of equal-length segments.

(b) Display the space-scale spectra in a color format.
(c) Display the scale spectra as graphs.

(d) Return to main menu with current segmentation.

The scale spectra are calculated over each segment and stored in the SpecLab data
structure; see Section 2.3. Once this step has been performed, the scale-spectra displays
can be initiated from the main menu. The default segmentation is one segment.

(ii) Estimate inertial range

Selecting this estimation option initiates a secondary menu with the following choices:
(a) Estimate the inertial range.
(b) Specify the inertial range.
(c) Display the space-scale spectra in a color format.
(d) Display the scale spectra as graphs.
(e) Return to main menu with current segmentation.

For option (a) the interial range estimates are computed automatically based on com-
parison of the scale spectra with pure fractional Brownian motion; see Section 4.4.2. For
option (b) the user chooses a constant segmentation that is applied to all data segments.
The default inertial range uses all available scales.

(iii) Estimate structure function

The stochastic variation of the power-law parameters from segment to segment is
modeled by independently fitting an exponential structure functions of the form

w + v(1 — exp(—Az/l))

to H and log(c?). Here [ is the ‘correlation range,” w is the ‘intercept,’ v is the ‘vari-
ance’ and Az converts the lag number to sample units. The user is supported in



choosing the appropriate structure function with displays that compare the empiri-
cal structure function calculated from the data with the default model (exponential)
structure function. The user can modify the parameters in the model interactively in
order to improve the fit via a secondary menu with the following options:

o Change correlation range.

¢ Change variance.

e Change intercept.

e Change max variogram lag.

o Accept current parameters.
Note that if the number of segments, and hence the length of the power-law parameter
processes, is too short, then the default structure function model is used. The default

model corresponds to constant power-law parameters, which is also assumed if the
estimation of structure function step is omitted.

(iv) Scale filter data

Scale filtering is a process by which the data are reconstructed using only a selected
range of the scale spectra values. The operation is useful as a preprocessing operation
to remove spurious contamination of real data vectors.

Choosing this option brings up a secondary menu with the following options:

o Select scale range.
¢ Display scale-filtered process.

¢ Return with filtered data replacing original data.

2.3 SpecLab data structure

The data vector processed by SpecLab is a data structure that accumulates inputs as the
various operations are performed. The scripts in SpecLab communicate using this data
structure. An example of a data structure is given below

Z =

data: [65536x1 double]
wavec: [65536x1 double]
wavel: [12x1 double]
nseg: 32
scspect: [32x10 double]
inertial: [32x2 double]
parproc: [32x2 double]
filtpar: [0.0026 0 7. 0.0463 0 8.]
filtparproc: [32x2 double]
trueparproc: []

The field values (see also Section 5.2.2) contain the following objects:

10



data
wavec
wavel
nseg
scspect
inertial
parproc

filtpar

filtparproc
trueparproc

the data vector

the vector ¢ in Matlab’s wavelet decomposition

the vector 1in Matlab’s wavelet decomposition

number of segments in the uniform segmentation of the data vector
the scale spectra for the given data vector and segmentation

the estimated inertial ranges for the given segmentation

the power-law parameter estimate based on the scale spectra

and estimated inertial ranges

the parameters in the structure-function models for the power
law parameters

the filtered power-law parameters

if the data vector was simulated the true parameter processes are
stored here

2.4 SpecLab directory structure

The SpecLab directories and files are

SpecLab

Lab InitZ Main SpecLab

demoAero demoBm demolnert demoXKol demoLfBm
specpath startup

display displayP displayS displaySyn displayVario displayW displayX

fileio ReadSpec WriteSpec getdat writedat

options HelpInput HelpSpec InertialSpec ProcSpec ScaleSpec

ScfiltSpec SmoothSpec SynthSpec VarioSpec

demo aero pause showinput showmenu

inertialest
Getlnertial Inertial MakeRefres Refres

varioest
GetVario VarioEst regmodel

spectest
GetParproc Linreg Spect hfunc

filter
Filt_Par Scale _Filt Taper

simulation
SegSim SimExp sim_ob simcoef vfunc

The scripts are documented in Appendix A.

11



2.5 The “Workout”

The workout shows how SpecLab commands can be used to generate all the figures in
Section 4. The script that implements the workout is ‘aero.m’ and is located in directory
‘SpecLab/aero.” The demo illustrates the steps involved in estimating a local power-law
model. By looking at the script itself the user can get information about how the interme-
diate level SpecLab routines implement the estimation steps. The user starts the workout
by choosing the option ‘demo’ in the input menu described in Section 2.2.1. Starting the
demo gives the following figures

Figure 4.1 Displays the data vector. The data vector is ‘demoAreo’ located in directory
‘SpecLab/Lab.” This data vector can be analyzed independently by choosing fhte second or
third options in the input menu described in Section 2.2.1.

Figure 4.2. Next, the user is presented with the main menu given in Section 2.2.2.
Choosing the menu option ‘PLOT wavelets’ creates the figure.

Figure 4.3. The user is asked to choose the main menu option ‘CHOOSE segmentation’
and then give the number of segments. Choosing the ‘plot scale spectra (graphs)’ option
creates the figure.

Figure 4.7. The user is asked to choose the main menu option ‘ESTIMATE inertial
range’ and then choose the ‘estimate inertial range’ option. Choosing the ‘plot inertial scale
spectra (graphs)’ option creates the figure.

Figure 4.8. By choosing the main menu option ‘PLOT Power law parameters’ the
user obtains the figure with the estimated parameter processes. Note that the parameter
processes have been truncated so that only the parameters in the latter, high-turbulence
regime are given.

Figure 4.10. Finally, by choosing the main menu option ‘PLOT Smoothed power law
parameters’ the user obtains the figure with smoothed parameter processes. Before doing
the smoothing of the parameter processes the structure function for the parameter processes
need to be estimated. In the workout these were chosen to be the ones used in [24], when
analyzing another data set these must be estimated choosing the ‘ESTIMATE model for
power-law parameters’ option in the main menu.



Chapter 3

Phase II Plan

3.1 Introduction

The prototype SpecLab environment demonstrates all the essential elements of an interactive
analysis tool for non-stationary local power-law processes. In its present form, however, it
has a number of limitations that would preclude its use by all but knowledgeable users.
Under a Phase II effort SpecLab would be converted into a more general and complete
software environment, together with Web-based documentation and interactive capability.
The general structure of SpecLab lends itself readily to these enhancements.

3.1.1 Analysis and synthesis of local power laws

We have emphasized that while the theory of stationary stochastic processes is well devel-
oped, there are few widely available utilities for analyzing non-stationary process. Non-
stationary processes by their very nature require adaptive processing. Thus, we believe that
one of the most important features of SpecLab is its capability for interactive and adaptive
processing. This, in turn, places more critical demands on user support. SpecLab ultimately
will make these techniques available in a robust and user-friendly software environment. In-
teractive analysis and synthesis for identification and replication of non-stationary effects
in a large class of fractal and multifractal processes are novel features that SpecLab will
provide. SpecLab also contains a number of features that extend beyond those associated
with local power laws. With the proposed software environment these features can be used
for more general problems. Thus, the focus on local power-laws is not overly restrictive.

3.1.2 Reproducible Research

Reproducible research was pioneered in the development of the software package Wavelab [4].
The stated objective was to make the full content of research available via a complete soft-
ware environment that implements the computational procedures used to generate reported
numerical results. The development of SpecLab will fully preserve this capability. While
the SpecLab reproducible research umbrella is specific to the analysis of non-stationary pro-
cesses using a local fBm-based power-law model, the structure is a template for distinctly
different applications that are based on interpretive analysis tools.

13



3.1.3 SpecLab as a learning tool

Fractal and multifractal processes have been the subject of much recent interest. SpecLab
will serve as a learning tool for users who want to understand such processes. Through that
understanding we expect new applications to emerge. A key aspect of SpecLab is analysis
and processing using the wavelet transform. The package contains user friendly procedures
for filtering in scale and time and visualization of the considered process based on this
transform. Thus, SpecLab can also serve as an introduction to wavelet applications.

3.1.4 Creating a portable software environment

The creation of the world-wide Web has revolutionized information exchange. We will make
use of the Web to provide easy access to SpecLab and its documentation. By making the
product easily available in a platform-independent form, the impact of research and devel-
oped software is enhanced enormously. We expect that the development of this aspect of
the software package will formalize an emerging trend at universities and research institutes.

3.2 Project outline

Under the Phase II effort the utilities described below would be developed.

3.2.1 Extended user guide

e SpecLab Web page. A Web page will be developed that will give background
information about SpecLab and its functionality. It will be based on an updated
version of the information in this Phase I report for SpecLab. That is, the Web
page will identify the SpecLab objectives, give information about locally stationary
processes, and document the software along the lines of an enhanced HTML version of
Chapter 2. The visitor to the Web page will also be able to download relevant papers,
such as [19, 24, 25].

The Web page will give instructions on how to download the software. Both compiled
stand-alone versions and MatLab scrips (as SpecLab is now configured) will be made
available. Both versions can be used in Windows or Linux-based environments. User
groups can be created for the exchange of ideas and techniques involving SpecLab and
similar software tools, data sets etc.

¢ SpecLab manual. From the Web page the user will be able to download a manual
that contains the information on the Web page itself, that is, a description of all
subroutines in SpecLab, information about downloading SpecLab, starting SpecLab
etc. The manual will also contain detailed documentation of the examples on the Web
page, as well as detailed information about the functions in SpecLab and the software
architecture.

e Workouts. The downloaded software will contain a set of interactive examples that
will provide “guided tours” through specific applications of SpecLab. The Phase I
version of SpecLab does this for an aerothermal data set. These workouts will provide
a complete analysis of important data sets and serve as an exended introduction to
SpecLab. We envision at least four workouts: one based on the aerothermal data set,
one based on Internet traffic data, and two based on numerically generated data sets.

e Online help. At every stage in the execution of SpecLab the user will have access to
online help in the form of hyperlinks to the relevant parts of the formal documentation.

14



3.2.2 Portability

Users will be able to download the package will be available via anonymous ftp or directly
from the Web page. There will be both Linux and Windows versions of SpecLab. The user
can choose to download either a compiled version or a version based on Matlab scripts.
The compiled version will not require the user to have Matlab. The Matlab version, on the
other hand, will enable the user to tailor the Matlab scripts to specialized processing tasks.
This activity will include replacing Matlab’s toolbox procedures for computing the wavelet
transform with the corresponding routines in the freely available software package Wavelab
[13].

3.2.3 GUI, visualization and data manipulation

e The graphical user interface (GUI) will be improved so that it better guides the user
through different processing options.

e Interactive parameter input will be improved. For instance, the user will be able to .
select the magnitude of the parameters on a continuous scale by using dials and bars
rather than from the set of discrete values in the current version.

e The user will be able to employ the mouse to select a subset of the signal from a time
frequency plot and continue processing with this subset.

¢ The routines for data input and validation will be improved as a way to facilitate input
of data in various formats.

3.2.4 Adaptation

Estimation of the locally stationary spectral parameters is based on a prior segmentation of
the data. Thisis a key step. A tool that supports the choice of the prior segmentation will be
of great interest, not only in SpecLab, but also in many other signal processing applications.
In version 1 of SpecLab the segmentation is done manually. In the final version procedures
will be implemented to specify a range of segmentations. A new component of SpecLab will
then look for an optimal segmentation within this range. This new component of SpecLab
will in part be based on the framework set forth by Mallat et al. in [17]. The segmentation
problem is a fundamental issue in signal processing. However, how to do it well is still
largely an open question. The promising approach introduced by Mallat et al. in [17] is
based on an optimal compression of the covariance operator in a suitable basis. SpecLab
provides a framework for solving this important problem.

3.2.5 Simulation

Some users may be interested mainly in using SpecLab for simulation of local fractional
Brownian motion. Thus, simulation of stochastic processes is another module within SpecLab
that will be important. The current simulation algorithm is based on a fast dyadic refine-
ment algorithm [23]. The proposed activity involves the following tasks:

e The simulation algorithm will be optimized for speed. This involves fine tuning of the
default parameters chosen in the simulation algorithm, and also further algorithmic
development. The refinement scheme in the current simulation algorithm will be
embedded in a divide-and-conquer framework that will further increase the efficiency
of the algorithm. Efficiency will be improved both with respect to computational cost
and in terms of use of the memory hierarchy.
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¢ Rather than having to use default parameters, the user will be given the option of
specifying a desired precision. With lower precision, i.e., larger deviations from the
specified power law, the simulation will be faster.

e A separate menu-driven tool that facilitates the simulation will be developed. The
user will be able to simulate multiple realizations in parallel and carry out simulations
in a batch mode. This module will make use of the improved facilities for parameter
input.

¢ The user will be given some flexibility in terms of choosing the stochastic model. It
will be possible to simulate point samples of fractional Brownian motion or fractional
Brownian motion that has been filtered so that the simulated values correspond to
local integrals of pure fractional Brownian motion. In addition the user will be able
to simulate local fractional Brownian motion where power law parameters are non-
constant.

o The procedure for simulation of local fractional Brownian motion will be improved. In
Version I of SpecLab this was done with a strong Markov approximation. This will be
relaxed in version II by means of the divide-and-conquer step in the new algorithm.

3.2.6 Variogram estimation

An important task in applied signal processing is the choice of an appropriate model for
the variogram or structure function. In SpecLab the variogram must be estimated for the
parameter processes that come from the initial segmentation. This subtask in SpecLab will
be developed further. The user will be able to modify parameters in a continuous fashion,
exclude data points, modify the set of points used in the estimation, etc. The objective is
to provide a state-of-the-art algorithm for this purpose that has at least the functionality of
existing geostatistical packages. Since this is an important task, the user will be given the
opportunity to carry out variogram estimation for an arbitrarily specified data set, not only
the parameter processes.

3.2.7 Bias, precision and wavelets

The current version of SpecLab is based on Haar wavelets. In the final version the user will
be given the option of using other types of wavelets. Using other wavelets is of particular
importance for extended signals where the non-stationary aspect is relatively low and the
desired precision for the parameter estimates is very high.

For small sample sizes (say with only a few spectral samples) or non Haar wavelet based
estimation the bias in the parameter estimation must be computed numerically. This will be
done a priori and the bias looked up in a table-lookup procedure. In Version 1 of SpecLab
an analytic expression for the bias was used; this assumes, however, that the estimation is
based on Haar wavelets.

In the new version of SpecLab the user will also be given the option to plot confidence
bands for the estimated power law parameters. The calculation of the variability of the
estimates will be based on a similar table-lookup procedure as the one pertaining to the
bias correction.
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3.2.8 Extension to exponential model

So far SpecLab has been tailored to local fractional Brownian motion. In the new version the
user will be given the option of choosing as a model an exponentially correlated Gaussian
process as well. This will significantly increase the set of applications in which SpecLab
can be used as a tool. The three parameters in the exponential model (variance, correlation
range, and white noise component) will be modeled as being locally stationary and estimated
similarly to the way the local power law parameters are estimated. This work includes
further theoretical development as well as new implementation and testing on some real
data sets. These data sets can, for instance be taken from the atmospheric data collection
effort [34]. '

3.2.9 Incorporating prior information

The most important turbulence parameter, the Hurst exponent, takes on values in the
range in between zero and one. This constraint will be included via a non-informative
prior distribution in a Bayesian estimation scheme. It will also be considered to include
more general prior distributions on both turbulence parameters, the Hurst exponent and the
intensity, for better handling of small data sets and also for fast adaptation.
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Chapter 4

Theory

4.1 Introduction

Stochastic processes that are approximately stationary and have approximately power law
spectral densities arise frequently in modeling atmospheric turbulence, financial data, geo-
physical data, etc. How can we estimate the variable power law behavior of the spectral
densities from data? The analysis will depend on how we segment the data and on how we
choose the range of scales, or frequencies, over which we look for a power law fit. In this
paper we address these issues using fractional Brownian motion as the underlying stochastic
model whose parameters are estimated locally by wavelet scale spectra. We then apply the
theory to atmospheric turbulence data. This data was first analyzed in Washburn et al. [34]
and subsequently in Papanicolaou, Sglna, and Washburn [25]; Rossi, Kaiser, and Washburn
[30]; Papanicolaou, Sglna, Rino, and Kruger [19]. We provide here a general framework for
estimating local power law processes with wavelets and a large part of the mathematical
background needed for its justification.

In Section 2 we introduce Fractional Brownian motion as a model for turbulence and
discuss the wavelet based scale spectrum that can be used for spectral estimation of such
processes. :

In order to deal with approximate stationarity and approximate power law spectra we
need a good understanding of the estimation issues for stationary, power law processes,
like fractional Brownian motion. Previous work on the statistics of wavelet scale spectra
of fractional Brownian motion can be found in Flandrin [7]; Tewik and Kim [33]; Abry,
Goncalves and Flandrin [1]; Wornell [36]; Peltier and Levy-Vehel [27]; Wang, Cavanaugh
and Song [35]. After analyzing the data, we provide in Section 6 a brief but complete
analysis of these statistics that is based on a general formula for the covariance of the
Haar wavelet coefficients (equation (4.13)). A central limit theorem for the estimators of
the power law parameters also follows readily from the covariance formula. When Fourier
spectra are used the statistical analysis of global power law processes is given in Robinson
[32] and an analysis of estimators for the exponent of the power law is given in Hall, Koul,
and Turlach [11]; Kent and Wood [16]. We use wavelet scale spectra because they provide a
time-scale decomposition of the data that is well suited to power law processes, whether they
are stationary (have stationary increments) or not. A comparison of power law estimation
based on wavelet scale spectra and on Fourier spectra, in the stationary case, is given in
Abry el al. [1].

In Section 3 we introduce the atmospheric data, and carry out a preliminary scale spectral
analysis using the Haar-wavelet basis. This analysis suggests that nonstationary effects are
indeed important for this data set. The range of scales over which the spectrum can be
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modeled as a power law, the inertial range, as it is called in turbulence theory, varies with
spatial location and, in addition, the estimated power law parameters depend on location.

In Section 4.4.2 we address the issue of choosing the range over which to fit the power
law by regression. We do this by using the fractional Brownian motion as a model locally.
Since the process is only locally stationary, power law parameters must be estimated based
on relatively short spatial segments. In Section 4.4.3 we show how to remove the variability
of the estimated power law parameters that is due to the finiteness of the segments. The
filtering that we do here is used frequently in geostatistics (Ripley [32]; Cressie [3]).

In Section 5 we return to the atmospheric data set and use the framework introduced
in Section 4 for estimation of its scale spectrum. We segment the data into intervals over
which they are approximately stationary without resorting to a full segmentation search as
in the method of Mallat, Papanicolaou and Zhang [17] that is based on the local cosine
transform. To avoid the global search we must have a rough estimate of the size of the
intervals of stationarity, which for the aerothermal data set we get from a variogram analysis
of the wavelet coefficients [20]. Another case where the intervals of stationarity are known
approximately is analyzed in Asch el al. [2] using the local Fourier transform.

Finally we show some simulations from the estimated model that assess the overall
relevance of our analysis. The main point of our analysis is that we are able to identify the
local variations of the power law parameters, the Kolmogorov turbulence law, which arise
from large scale atmospheric phenomena. The analysis should be applicable to other data
sets, financial data for example, where departure from stationarity needs to be quantified.

4.2 Scale spectrum of Fractional Brownian motion

4.2.1 Fractional Brownian motion

We shall model ‘pure’ power law processes by fractional Brownian motion (fBm), { By (z);z >
0}, introduced by Mandelbrot and Van-Ness [20]. It is a Gaussian process with mean zero,
stationary increments and covariance

2

o* . N
E[Bu(z)Buly)] = 7(]:51”’ + [yl = |z -y (4.1)
with 0 < H < 1 and ¢ parameters. Its structure function is
E[(By(z) - By(x — Az))?] = o*Az]?H,

and it is conditioned to be zero at the origin: Bgy(0) = 0. The so called Hurst exponent
H determines the correlation of the increments. The covariance of future increments with
past ones is

pu(Az) = E[(Bu(r) -~ Bu(z — Az))
x(By(z + Az) — By(z))] = o221 —1)|Az|?H,

which is independent of z. When H > 1/2 this quantity is positive so if the past incre-
ment is positive, then on average the future increment will be positive. Feder [5] calls this
persistence. When H < 1/2 we have an antipersistent process with a positive increment in
the past making a positive increment in the future less likely. Ordinary Brownian motion
corresponds to H = 1/2. In this case future and past increments are independent. Of
special interest here is H = 1/3 which corresponds to the Kolmogorov scaling law (Monin
and Yaglom [21}).

19



Fractional Brownian motion has stationary increments but is not itself stationary. How-
ever, as shown in Abry et al. [1] for example, it is possible to assign a pseudo-spectrum to
it by cutting off the low frequencies. Let

XZBH*TZ)

with star denoting convolution and v a function that integrates to zero so that its Fourier
transform W vanishes at zero frequency. The process X is stationary and its power spectrum
is

Py o o®|f|7CHDR(f)P%.

Since we usually observe power law processes through a filter that cuts off very low frequen-
cies, we can associate with By the power law spectrum

P, « of|f|mGHFY.
In the Kolmogorov case H = 1/3 the spectrum is 0| f|~3/% over some range of frequencies,
called the inertial range.

Fractional Brownian motion is self-similar since Bg(z) and a’ By (z/a) have the same
finite dimensional distributions for all a. We next discuss estimation of fBm, or a pure power
law process. In Section 4.4 we generalize the estimation procedure to locally stationary
power law processes.

4.2.2 Haar wavelets and scale spectrum

We want to carry out a spectral analysis of the process, given as a finite set of data, and to fit
the estimated spectrum to a power law. For this purpose scale spectra, rather than Fourier
spectra, will be used. Scale spectra are a natural and flexible tool for self-similar processes
(Kaiser [15]; Abry et al. [1]). The scale spectrum is defined in terms of the coefficients of the
data in a wavelet basis. We will use the Haar wavelet basis although other bases could have
been used as well (Goncalves and Abry [9]). Haar wavelet based estimators are sometimes
related to classical ones, as is in particular the Allan variance estimator for the slope of the
log of the spectral density (Percival and Guttorp [28]).

Let Y denote the process for which we want to compute the Haar wavelet coefficients.
Denote the approzimation coefficients at level zero by X = (ag(1), ag(2), ..., ao(2™)). These
are defined by

ag(n) = /’:1 Y (z)dz .

Given this level zero representation, the data, we construct successively its wavelet coeffi-
cients with respect to the Haar basis as follows. Let

a(n) = %(aoﬂn) +ao(2n — 1)) (4.2)
di(n) = —;—i(ao(2n) —a(2n—-1)), for n= 1,2...,2M-1

be the smoothed signal and its fluctuation, or detail, at the finest scale. Note that the detail
vector d; contains every other successive difference of the data. This process of averaging
and differencing can be continued by defining

ax(n) = (a1(2n) + a;(2n - 1))

(a1(2n) —a1(2n - 1)), for n=12.,2%"

Sl sl
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and in general

aj(n) = %(aj_l(Qn) + aj-—l(?n _ 1))
d(n) = %(az‘—x(%) —aj_1(2n—-1)), for n=1,2..,2""

for j = 1,..,M. The data vector X can then be reconstructed from aur,dpr,dpr—1, ..., d1
since from equations (4.2) we have

ap(2n) = %(al(n)+dl(n))
ao(2n—~1) = —\}—E(al(n)—dl(n)), for n=1,2. 9M"1

and now a; can be replaced by sums and differences of as and ds, etc.
The detail coefficients at level j can alternatively be expressed as

d;(n) = % /_Oo W(z/2 = )Y (z)ds

with the mother wavelet defined by

-1 i -1<z<-1/2
v(x) = 1 if -1/2<z<0
0 otherwise

The difference coefficients correspond to probing the process at different scales and locations,
with n representing location and j scale. From the self-similarity of fractional Brownian
motion it follows that for such a process E[d;(n)?] o« 27CH+1),

The scale spectrum of X relative to the Haar wavelet basis is the sequence S; defined
by

oM—j
1 - ‘ .
S = 535 > @(n)?, §=1,2,..,M. (4.3)
n=1
For fractional Brownian motion the log of the scale spectrum is approximately linear in the
scale 7. As discussed further in Section 6 this can be used to estimate the parameters of the

process by regression It is easily verified from the definitions above that the [? norm of the
data vector X can be written as

oM M ‘
> (ao(n)® = (an)* + Y 2M775;
n=1 i=1

which is a way of expressing the orthogonality of the decomposition of X into aps and the
di,j=1,...,M.

The scale spectral point S; is the mean square of the detail coefficients at scale j. The
spectrum can therefore be interpreted as the energy of the signal in the different scales
relative to the Haar wavelet basis. Consider data containing information only at the finest
scale: X = {1, —1, 1, =1, ---}. Then only the d;(n) coefficients are non-zero. Hence,
S; roughly corresponds to the energy at 20~V times the finest scale.

Note that the spatial support of the integrals of the process defining the wavelet coef-
ficients at a certain scale is adapted to the particular scale. The short scales, that provide
high frequency information, are defined in terms of consecutive integrals of narrow support.
A plot of these difference coefficients reveals information about how the high frequency
content of the data change with location.
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4.3 The aerothermal data

4.3.1 Temperature and index of refraction fluctuations

Our objective is to estimate the spectrum of temperature data taken from the upper atmo-
sphere. One motivation for our modeling and estimation is to be able to generate synthetic
random media for the simulation of wave propagation in a turbulent atmosphere. Before
we analyze the aerothermal data we explain briefly how velocity, temperature and index
of refraction fluctuations are related to each other and how the Kolmogorov scaling theory
enters in their description (Monin and Yaglom [21]; Strohbehn [31]).

The Kolomogorov theory is a phenomenological statistical description of the velocity field
in the atmosphere. Based on a scaling argument, the mean-square velocity differences are
described in a universal manner over a rather broad range of spatial scales, the inertial range.
If we assume homogeneity, isotropy and incompressibility the result is that the structure
function of the velocity has the form

El(vx(xo + %) = vx(x0))?] = CZx[*/? (4.4)

Here vy is the velocity in the direction of the displacement x. The parameter C2 is the
velocity structure constant, a measure of the amount of energy in the inertial range, which
is typically confined between an inner scale ly and an outer scale Lyg.

The connection to temperature is through the theory of convection-diffusion of a passive
scalar. It turns out (Monin-Yaglom [21]) that temperature fluctuations have also a structure
function with Kolmogorov 2/3 scaling.

At optical frequencies the variations in the index of refraction én are approximately

T
on = —7913‘5,[—2 x 1078

with P atmospheric pressure in millibars and T temperature in degrees Kelvin. Thus, in
order to describe the spectrum of fluctuations in the refractive index we need only the
spectrum of the fluctuations in the temperature. Wavelet scale spectra are used to analyze
turbulence data in Hudgins, Friehe and Mayer [14].

The above model for refractive index fluctuations is used extensively to model atmo-
spheric wave propagation. Variations in the turbulent character of the medium are typically
modeled through variations in C2 only and not in the exponent, which is fixed at 2/3.

‘4.3.2 Data analysis of aerothermal data

We will analyze temperature data obtained by the Air Force high-altitude laser propagation
and turbulence data collection effort. For a detailed discussion of recording procedures
and analysis see Washburn et al. [34]; Papanicolaou et al. [34]; Rossi et al. [30]. A
strong effort was made to provide high quality data that could be used to characterize the
turbulent atmosphere. This unique data set cannot be maid generally available, but the
above references provide together a fairly detailed account for the data. Here we take the
data as our starting point and examine what analysis reveals about their structure. We are
interested in particular in accounting properly for nonstationary effects. All calculations are
carried out in MATLAB on a Silicon Graphics workstation.

In Figure 4.1 we show the temperature data, which has approximately 4.2 x 10® points.
The spatial resolution is approximately 2cm. The data is, of course, quite noisy and it is
part of our task to remove spurious noise effects in the estimation process.

In Figure 4.2 we show the first 21km of the temperature data along with dy,d3,ds,d7, dg,dy1,a11-
The detail coefficients d; carry information about the data on larger scales as j increases. For
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Figure 4.1: Top figure: the raw temperature data. The spatial resolution of the data is
approximately 2cm.

example, d; shows successive differences of the temperature over distances of 2.56m, after
averaging over successive segments of length 1.28. Thus, as j increases the data are lowpass
filtered with a filter of decreasing bandwidth and then subsampled before the differences are
formed. It is clear that the visible periodic components seen in the d; coefficients cannot be
attributed to turbulence or larger coherent structures in the atmosphere. In the estimation
of atmospheric turbulence parameters these spurious features must be suppressed. In ds, - - -
the high frequency periodic noise component seen above has been effectively suppressed by
the lowpass filtering.

Our main objective is now to examine whether the data can be modeled well by a ‘power
law’ model over a subrange of scales. Recall that for such a process, the scale spectrum S;
is linear in a log-log plot, when the record is very long. In Figure 4.3 we show log-log
plots of scale spectra over nonoverlapping segments of the data, with each segment having
length 1.3km. The top plot corresponds to the first half of the data whereas the bottom
plot corresponds to the second half. Each plot contains scale spectral points over 16 scales,
1 < 5 <€ 16. This corresponds to length scales from [; = .04m to l;¢ = 1.3km. We take as
abscissa the spatial frequency Kj;

K; = E%zl-f [rad/m] = 1007277 [rad/m]. (4.5)

Note that the scale spectra show a distinct departure from power law behavior for scales
below one meter (K = 6). For larger scales, power law behavior may be considered in the
range between 2.5m to 80m (.08 < K < 2.5) approximately, which corresponds to the detail
coeflicients d7 to di». The departure from power law behavior for the shortest scales is
partly due to the influence of measurement noise. The first half of the data is less energetic
than the second half and hence more noisy. The estimated intercept and slope for the log
scale spectra depend on the particular segment of data used. We want to identify the part
of this variability that is due to the nonstationarity of the process and minimize variability
due to estimation errors.

For fractional Brownian motion the wavelet coefficients will be normally distributed.
In Figure 4.4 we show a histogram of the wavelet coefficients at scale 8, normalized by a
local estimate of the variance. The dashed line corresponds to a Gaussian distribution. In
the bottom plot we show the autocorrelation of these wavelet coefficients, normalized by
their variance. We plot the correlation in terms of the empirical variogram computed, as
in (4.11) below. The dashed line is the theoretical correlation for fBm with Kolmogorov
scaling, H = 1/3 (as defined in (4.13)). In Figure 4.5 we show an estimate of the structure
function for log(d;(n)?); 7 < j < 9. If the process had a pure power law spectrum over these
scales we would see only a very small correlation. However, these quantities are correlated
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Figure 4.2: Haar wavelet coefficients for the first 21km of the data. The top left figure is
the temperature data. The one below it is the d; detail coefficients. The third from the top
is the d3 and the bottom the ds; detail coefficients. Note that the 4km burst seen in d; is
not visible any more at the ds level, after four successive averagings of the data. The top
figure on the right is the a;; coefficients and below it dy,,dy, d7.

on the order of km, indicating that we have a local power law structure.
Before we continue with the scale spectral analysis we note the following.

¢ Noise bursts in the data enter only in some of the detail coefficients, as can be seen
from Figure 4.2. The criterion for selecting of the inertial range, implemented in the
next section, will automatically restrict the scale range.

¢ The temperature data are not a stationary time series and they do not have stationary
increments. Computing scale spectra over long segments, in which the process cannot
be taken as stationary, gives a quantity that is hard to interpret. Even though the
average slope of the log scale spectra over several segments is close to —5/3, as the
theory of turbulence predicts, there is a lot of variability. A local power law model
of the kind discussed in Section 4.4 is likely to fit the data better than the idealized
power law model, with stationary increments.

We will estimate the scale spectrum of the data when we model it as a local power
law, using the method described in Section 4 To start the estimation we must have rough
estimates for the intervals of stationarity and for the exponent of the power law. In view of
Figures 4.3, 4.4 and 4.5 we choose these estimates to be

e (&) =2km™!
e Hy =1/3 (Kolmogorov scaling) .

In the next section we develop a framework for estimation of local power law processes with
varying inertial range and power law parameters. In Sections 4.53.1 and 4.5.2 we carry out
the estimation. First we estimate the inertial range and then the power law parameters.
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Figure 4.3: Scale spectra of 1.3km nonoverlapping segments of the data (2!¢ points per
segment) obtained from the Haar wavelet decomposition. The top plot corresponds to the
first half of the data whereas the bottom plot corresponds to the second half. The dashed
line has slope —5/3 as in Kolmogorov spectra. The solid line is the average over the scale
spectra of the different segments. After the averaging is done the scale spectra are plotted
in log-log format.

4.4 Estimation of local power law processes

4.4.1 Modeling and segmentation

The fractional Brownian motion described in Section 2 is an idealization of a process with
power law spectrum. It has stationary increments and if the power law is truncated at
low frequencies then it is itself stationary. In most physical or financial applications where
power law behavior is expected locally, the power law parameters will vary so the process
cannot be stationary in the large. The aerothermal data provide an example. We would
like to estimate the power law parameters over segments that are short enough so that they
can be taken as constant but long enough so that their statistical estimates are stable. How
are we to decide what is a good segmentation of the data in this vague sense? This is a
very difficult problem that is rarely addressed in theoretical or applied studies of spectral
estimation. In Mallat et al. [17] a class of locally stationary processes is introduced and
an algorithm for finding intervals of approximate stationarity is developed. This method
is based on an exhaustive search for an optimal segmentation, in a suitable sense, into
intervals of stationarity. It does not work so well when the intervals of stationarity are all
of roughly the same size, and when dealing with turbulence data. Thus, here we want to
follow a somewhat different approach where we can take advantage of prior information
about intervals of stationarity, as is the case of the aerothermal data.

To fix ideas we will consider estimation of parameters for a multifractional Brownian
motion (mBm). This is a generalization of fractional Brownian motion where the parameters
vary with location. In the time domain they have the representation, ( Goncalves and
Flandrin [9]; Peltier and Levy-Vehel [27])

o:(2) ° H.(2)=1/2 H.(z)-1/2
B.(z) = m/ (2 — 5)H (=12 _ (Lg)He@=1q 1) (4.6)

—0
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Figure 4.4: The top plot shows the empirical distribution of dg. The solid line is a Gaussian
distribution. The bottom plot shows the correlation of these wavelet coefficients. The
dashed line is the theoretical correlation for fBm with H = 1/3.

+/ (z — s)T @124y (5)
o}

with W the standard Brownian motion and

H.(z) = Hf(ex) (4.7)
o:(z) = o(ex) (4.8)

where H(-) & o(-) can be deterministic or random. For example, they can be stationary
stochastic processes with smooth paths and decaying correlation functions, independent
of the Brownian path W(-). When H and ¢ are constants then (4.6) is a time domain
representation of the usual fractional Brownian motion.

The parameter ¢! is a measure of the interval of stationarity in the sense that, as in
Goncalves and Flandrin [9],

E[(B.(z) — B.(z — A;I;))Q] o~ G?(x)lAa:PHE(T)

for eAz small. This means that for scales that are small compared to the interval of
stationarity, the processes B.(z) behaves locally like a fractional Brownian motion with
parameters frozen at x.

In Section 4.4.3 we will describe a method that removes dependence of the estimated
parameters on a prior estimate of the interval of stationarity. The basic idea is that we know
roughly what 1/¢ should be and how the estimation errors behave if the underlying process
is fractional Brownian motion, given the segment size. We then filter out these estimation
errors and get estimates that do not depend sensitively on the prior choice of the size of the
interval of stationarity.

Another modification that is necessary in the nonstationary case is the identification of
the inertial range over each interval of approximate stationarity. The error in the power
law fit to the scale spectra, over a segment of data, depends on the scale range that is used.
How do we select a range of scales for which the error in the fit is acceptable? In the next
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Structure function for log(dj(n).z);

Structure function

Figure 4.5: The figure shows an estimate of the structure function of log(d;(n)?) as function
of nAz and with 7 < j < 9. The magnitude of these quantities determine the scale spectrum
and they decorrelate over a scale on the order of km. The dotted, dashed and solid lines
corresponds respectively to scales 7,8 and 9.

section we introduce a criterion for selecting the range based on comparison with an ideal
fractional Brownian motion.

4.4.2 Estimation of the inertial range

The power law behavior that we want to identify in the data is necessarily restricted to a
finite set of scales, the inertial range, in each segment of stationarity.
Let 2M denote the length of the data vector over the segment under consideration. For

an ideal fractional Brownian motion with Hurst exponent H let S;, ¢ = 1,..., M be its
wavelet scale spectrum. Then, for each subrange {i1,---,i2} the measure of misfit
rinis) = 3 [logy(Se) — logy (S, (4.9)

i=1iy

with S; the power law estimated by weighted least squares, is a random variable whose law
can be computed analytically in principle or numerically. It depends weakly on H so we fix
it to equal some rough estimate H = Hy. For the aerothermal data of Section 4.3 we take
Hy = 1/3, the Kolmogorov exponent. Let R(;,42) be the 90th percentile of the distribution
of r(i1,42) with the value of the Hurst parameter equal to Hy. The scale range is now chosen
as the largest range {iy,---,i2} for which 7(i1,i2) < R(i1,%2). Here 7(i1,143) is the value of
the error (4.9) obtained from the actual data.

In order to obtain stable power law parameter estimates in the regression we need a min-
imum number of scale range points. In the application to the aerothermal data introduced
in Section 3 we choose to model in terms of a power law only over segments for which there
are 5 or more points in the estimated scale range.

4.4.3 Segmentation independent power law estimation

Given a fixed segmentation of the data into approximate intervals of stationarity that is
based on some prior information, we first calculate the inertial range as described in the
previous section and then do the power law fit. The power law parameters are obtained by

27



weighted linear regression of the log scale spectrum, see Section 4.7.4. The estimated power
law parameters depend on the segmentation. We will now describe a method with which
this dependence can be removed.

The idea is to do a filtering of the parameter estimates in order to remove the variability
that is segmentation dependent. From the theory of the power law estimators for fractional
Brownian motion we know that the slope estimator has the form

o= p+uw (4.10)
where p’ is the slope for the i’th segment and w' the fluctuation due to the finiteness of
the segment. We cannot take large segments, that reduce this error, because we are limited
by the nonstationarity. The errors w' are essentially uncorrelated over different segments
and we have to construct a filter that will predict p' from the estimates p by removing the
noise w?, to the extent possible. We assume that p' is itself a stationary stochastic process,
independent of the Brownian motion that generates the fractional Brownian motion. The p*
are the intrinsic variation of the power in the locally stationary fractional Brownian motion.
The correlation length of the p! must be longer than the segments used in estimating them
in order to have approximate stationarity relative to the segmentation.

It can be shown using the results from Section 6 that w' is close to being a white process.
This is important because it allows us to estimate the autocovariance of p from the estimates
P, using the variogram, for example. Given estimates of the autocovariance of p* and the
variance of w! we can design a minimum mean square error predictor or smoothing filter for
P :
The minimum variance unbiased filter for prediction of the parameter processes is as
follows. We describe it in the context of the slope parameter, but the filtering of the log
intercept is completely analogous. Let P = (p;) be the vector of estimates, P = (p;) the
realization of the slope process and P = (p) the constant mean. Then the filter ' is a matrix
that transforms P into TP in such a way that

E[||ITP - P|*]

is minimized over all matrices I that also preserve the mean P of P, that is [P = P. Let
C} be the covariance matrix of P. Then it easily follows that

I = (Cp+Cy) ' [Cp+ul ®P]
where the vector u = (u;) is given by
P, —PT(C, +Cy) 'Cp
PT(C, + Cy,)~ 1P

and C,, is the diagonal covariance matrix of the estimation errors w. Here Cp,i is the i—th
column of the matrix C, and the superscript T stands for transpose. The slope and log
intercept processes are filtered separately. Filtering of this kind is discussed in Ripley [32]
and Cressie {3] for example.

Since the effect of the sample noise w' in (4.10) is largely removed by the filtering
procedure, the estimates of the parameter processes will be essentially independent of the
prior choice of segmentation.

u; =

4.5 Application to aerothermal data

4.5.1 Estimation of inertial range

We estimate the set of scales where the process can be modeled as a ‘power law’. Figure
4.3 shows that it varies with location. That is, the set of scales where the scale spectrum is
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approximately linear is location dependent. There are two main reasons for this. First, the
scale range where the physical process has power law spectrum varies and depends on the
local intensity of the turbulence. Second, the set of scales that are affected by measurement
noise varies depending also on the intensity of the turbulence.

We use the scheme described in Section 4.4.2 to estimate the inertial range. First,
we choose a segmentation that is short relative to the prior estimate of the interval of
stationarity. We choose segments of length 2! points. Then we apply the algorithm of
Section 4.4.2. For all scale ranges we measure the difference between the scale spectrum
computed from the data and the fitted power law and choose the estimated scale range as
the largest one for which this measure is within the 90th percentile of the corresponding
measure for a realization of fractional Brownian motion.

The estimated ‘effective inertial ranges’ are shown in Figure 4.6 by the vertical solid
lines. For each segment there is one vertical line showing the scales included in the corre-
sponding effective inertial range. The segments consist of 2'° points and the maximum scale
considered is therefore 14. Note that the more energetic second half of the data displays
a more consistent power law behavior, as one would expect on physical grounds in fully
developed turbulence.

iy
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Figure 4.6: The vertical lines in the figure are the estimates of the location dependent inertial
ranges. That is, the scales over which the observed process is approximately a power law.
For each segment of length 2!3 points there is one vertical line showing the scales included
in the inertial range estimate.

The spectra computed with the estimated location dependent inertial ranges are shown
in Figure 4.7, the top plot. They are plotted in a log-log format and shifted vertically to
coincide at a center scale. We include only spectra that have at least 5 points. Note the
fluctuations in the computed slopes. In Figure 4.7, bottom plot, we show the average of
the spectra. The averaging is carried out before the log transformation. Note the excellent
match with the Kolmogorov scaling law shown by the solid line. There is a slight deviation
at the 5th scale. This corresponds approximately to the onset of the measurement noise
caused by the airplane, see Figure 4.3.

4.5.2 Estimation of power law parameters

In the previous Section we estimated the inertial range for the scale spectrum, relative
to a fixed segmentation. We will now estimate the power law parameters over this set of
constrained scales. We use the method described in Section 4.4.3 for this purpose. Our
main objective is to capture the intrinsic variation in the parameters. If we choose a coarse
segmentation the variability of the estimates will be small. However, the estimated power
law based on the scale spectrum may in this case be an average of power law parameters
that vary within the section. This is illustrated in Figure 4.7. The average power law
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Figure 4.7: The top plot shows the computed scale spectra in each subsection, dotted lines.
The estimates are based on the scale ranges shown in Figure 4.6. The bottom plot are the
average of the (untransformed) spectra. Note the good match with the Kolmogorov scaling
law shown by the solid line.

over the whole data set is very close to the Kolmogorov scaling law. However, within each
section (see top plot) such a model must clearly be rejected. Therefore we must choose a
segmentation that is not much larger than the interval of stationarity. The estimates should
be independent of segmentation. That is, if we shorten the segments this should not lead
to an increase in the variability of the estimated parameters.

To show that this is achieved by filtering we choose three segmentation lengths in addition
to the one used in the previous section. We choose the following segmentations

160m (2'% points), 327m (2'4), 655m, (2'%), 1.31km (2'9).

There are 512, 256, 128, 64 nonoverlapping segments, respectively, in each case. For each
segmentation we estimate inertial ranges for the scale spectrum as above. In Figure 4.6 we
show the estimated ranges corresponding to segments of length 655m.

We use the linear least squares regression

iy b g 2
logS; ~c' +p logg(%)
for each segment 7, with j the scale in suitable units. In Section 4.7.4 we analyze the
regression (4.11). The results of the estimation are shown in Figure 4.8. If the inertial range
has fewer than 5 spectral points we do not estimate power law parameters and leave a gap
in the figure.

We see from the figure that the estimated slopes, p, and the log intercepts, ¢, vary consid-
erably over the 80 kilometer data set. They also depend on the segmentation, with the finer
ones having larger fluctuations (dotted lines). Note also that the parameter estimates cor-
responding to the coarsest segmentation differ qualitatively from the others. This segment
length is so long that intrinsic variation in the parameters are not captured appropriately.
The difference between the parameter estimates for the finest segmentations is mainly due
to a white noise estimation residual. For the log intercept process this residual is small
and we have essentially obtained what we sought, a parameter estimate that is stable with
respect to a shortening of the segmentation. However, for the slope estimate this residual is
large. This leads us to the second step of the estimation. In this step we carry out a filtering
procedure in order to remove the sampling variability that is segmentation dependent and
particularly strong for the slope process p. We use the filtering described in Section 4.4.3.
From the first step we obtained the estimates (in the case of the slopes)

A1

Po= pruw.
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Slope; segmentation: 160m, 328m, 855m and 1.3km
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Figure 4.8: Top figure: slopes of log-log scale spectra from wavelet decompositions based on
four different segment lengths. At the finest resolution the scale spectra are calculated over
nonoverlapping segments 160m long. This is the dotted line that has the largest variations.
At the next resolution the nonoverlapping segments are 327m long (plotted with a dashed
line). The other two resolutions are 655m and 1.31km and are shown with dash-dotted
and solid lines, respectively. The bottom figure is the same as the top but now for the log
intercept of the scale spectra. The gaps correspond to inertial ranges with fewer than five
spectral points.

The filter computes the minimum variance unbiased predictor of p given p*.

To construct the minimum variance unbiased filter we need the some additional estimates
that we get from the process p*. We assume that the slope process is exponentially correlated.
We need, therefore, its correlation length I, and its variance ag

Elpi -p)(p; —D)] = opexp(=Lli~jl/l,)

with L the length of the segments. Note that this model is intrinsic to the process and
does not depend on the segmentation. As discussed above we shall model the sample noise
process {w;} as white and we only need its level o;,. We estimate the parameters o7, [, and
o2 using the empirical variogram.

For a time series X = (X;) of size N the empirical variogram with lag j is defined by

2 Xiwj — Xi)? (4.11)

with dependence on the length of the data vector N not shown. Note that the variogram
is essentially unaffected by a relatively slow variation in the mean P of the process. The
mean of the empirical variogram for the slope process P is

EV(i)] = op(1—exp(=Lijl/lp) +o

and from this we obtain the parameter estimates by fitting to the empirical variogram. In
particular, o2, is given by the vertical intercept since the process {w;} is white.
The estimated parameters are as follows:
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e For the slope: Vertical intercept o7, = 0.07, horizontal asymptote level o2, + o2 =
0.16, and correlation length 800m (five segment lengths).

s For the log intercept: Vertical intercept 62 = 0.1, horizontal asymptote level 3 +
&2 = 3.0, and correlation length 800m (five segment lengths) are the corresponding
parameters.

These estimates are obtained using the finest segmentation, 160m, and only the data in the
last half section, the high turbulence section. The estimates were based on slope and log
intercept processes obtained by regression as above, but for the fized set of scales 7 to 12. In
this case the magnitude of the estimation error does not depent on the segment. We show
the correlation structure in Figure 4.9. The solid line is the fitted model. There are two
parts to it, the sampling noise part (the intercept) and the exponential part corresponding
to intrinsic variation in the parameters. The intercept part is seen to match well with that
obtained from the asymptotic theory presented in Section 6 which predicts its value to be
0.07 for the slope and 0.05 for the intercept.

Variogram for slope

0.2 T T T

km

Variogram for log intercept
T T

3.5

Figure 4.9: Variograms for the fluctuations of the slope (top) and log intercept (bottom)
processes obtained from the temperature data. The stars are the variograms. The solid
lines are fitted exponentials. We use slope and log intercept estimates from the data with
the finest, 160m, resolution.

Using the estimated model parameters we carry out the filtering to get a better estimate
for the slope and log intercept processes. In Figure 4.10 we show these filtered slope and
intercept processes. Note that after the filtering all three segmentations give essentially the
same result; as expected. We do not include the coarsest segmentation since its segment
length is long relative to the interval of stationarity and intrinsic variations in the parameters
are being smoothed out.

We next simulate synthetic temperature profiles using the parameters estimated above.
Recall that we only aim to model the process on the scales corresponding to the turbulent
inertial range. We therefore scale filter both the aerotherman data of Figure 4.1 and the
synthetic temperature profile so that only the coefficients in the Haar wavelet basis corre-
sponding to the inertial range contribute. Figure 4.11 shows the scale filtered processes.
The similarity between the processes is striking. Note the short section in the bottom plot
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Siope: segmentation: 160m, 328m and 855m
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Figure 4.10: Filtered slope (top) and log intercept (bottom) processes of the actual data for
the three finest segmentations. Note that the filtered processes for all three segmentations
are essentially the same. The dotted line corresponds to the two finest resolutions. The
dash-dotted and dashed curves correspond to the coarsest segmentations. The filtering
has eliminated the differences in the slope and log intercept processes that are due to the
segmentation (as in Figure 4.8) by removing the white noise component of the slope and log
intercept fluctuations that is due to sampling. Note the closeness of the slope estimate to
the Kolmogorov value 1.66 in the energetic, second half of the data. Note also the increased
value of the log intercept, and its fluctuations, in the energetic second half. This is what is
expected from physical considerations (Washburn et al. [34]).

with no data shown. This interval corresponds to a low intensity non-turbulent interval
in the atmosphere where a laser beam propagates without much distortion due to medium
heterogeneities. Next, we assess the accuracy of the parameter estimates by applying the
estimation procedure to simulated data. We found that the standard deviation between the
specified and estimated parameters for the local slope and log-intercept estimates to be .15
and .3 respectively.

4.6 Summary and conclusions

We have analyzed in detail estimation of fractional Brownian motion based on the scale
spectrum. Moreover, we have generalized the estimation procedure to a local power law
process. For such processes the power law itself (the exponent or slope) and the multiplica-
tive constant (log intercept of the scale spectrum) are not constants but vary slowly. We
estimate the slope and log intercept of the scale spectrum by appropriately segmenting the
data and then removing segmentation effects by a filtering procedure. The slope and log
intercepts themselves are modeled as stochastic processes. The estimation of the power law
includes the identification of a location dependent inertial range, that is, the scale range
where the process can be modeled as a power law.

We applied the estimation procedure to an important set of aerothermal data. We
found that the average of the estimated slope process is close to the value predicted by the
Kolmogorov scaling theory. To get a faithful representation of the heterogeneity in the data
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Figure 4.11: The actual temperature data set (top figure) obtained by synthesizing it from
the detail coefficients in the range 6 to 11 of its Haar decomposition, corresponding to about
1 to 40 meters. Information from this range of scales enters into the estimates of the slope
and log intercept processes. The bottom figure is the same as the top but for the simulated
data. Note the striking similarity between the two figures.

it is however important to incorporate the local fluctuations around this value.

We generate synthetic temperatures in two different ways. First, the local power law
process is simulated conditioned on the particular parameters estimated from the data (slope
and log intercept). Then we get a faithful replication of the (scale filtered) temperature data.
Second, the parameters are taken as random, that is, sampled from their model. Then the
simulation is sample-wise very different from the actual data, but the statistics are faithfully
reproduced. Such realizations can be used to define synthetic media for wave propagation
codes. This is the application that motivated our investigation. A complete study of the
effects of the heterogeneity in local power law model on wave propagation has yet to be
carried out.

An important aspect of the model that we use is separation of scales in the variation of
the estimated parameters (slope and log intercept) from the scale at which we sample the
process.

4.7 On estimation of fractional Brownian motion

4.7.1 Statistics of wavelet coefficients for fBm

The scale spectrum is based on the wavelet coefficients. We now consider the statistics of
the Haar wavelet coefficients for fBm. Next we will analyze the scale spectrum and power
law parameter estimates based on these statistics. We assume that the data given to us is
the wavelet approximation coefficients at level zero. That is, we assume that

ao(n) = / : Bu(z)dz . (4.12)
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The wavelet, coefficients are therefore normally distributed random variables with

Eldj(n)] = 0
Varldim)] = o* (QH( 1+_:2)2 (—2:1 2
Corld (n)dsa(no)] = gz DIVIF 808 e ) - (419)
Here
=270 4 <js : (4.14)
is the relative scale,
D = |(2ns—1)l—(2ny — 1) (4.15)

is the relative location and
53f(a) = fla +d) - 2f(z) + flx — d) (4.16)

is the second order symmetric difference. These results are derived using (4.1) and self-
similarity of fBm. Note that the expression for the correlation of the wavelet coefficients
takes on a universal form depending only on the relative displacement in space and scale.
The derivation of the precision of the power law estimators in Section 4.7.3 is based on
(4.13), which was only known in special cases before ( Tewfik and Kim [33]; Flandrin [7]).
Consider the correlation of wavelet-coefficients, when
D ; i i
T = [272(2n9 — 1) = 271 (2ny) — 1)|2772 = +o0
then R ,
S/p %D
[/ DY (1/D)?

is a forth order central difference operator and its expansion gives the asymptotic result

2-2H 4—2H
crigyey = eng ey [()7 o ()]

D D

If the scales 7; and j» are given, then for ns — oo and n; fixed we have that % = .)nl\/i,

whereas for n;y = oo and n» fixed we have Y ML The correlation within a single scale

D 2n,
is in particular
H 1 4-2H
+0 (__> 47
)

For general wavelets the following asymptotic result is presented in Tewfik and Kim
(1992) and Flandrin (1992)

2.9

(H+1)(2H+1)H(2H—-1)[( 1 )

niy Jna —
Corldj*di®] = 222 _ 1) 2ms — 1)

E[dMd7] ~ O(|22ny — 29, [P R)

J1 72
for |2j2n3—2j‘nli - +00

with R being the number of vanishing moments for the wavelet (R = 1 for Haar wavelets).

35



4.7.2 Statistics of the scale spectrum

Using the above results for the wavelet coefficients we get a characterization of the statistics
of the scale spectral points. The mean is

E[S;)] = E[d;j(n)’] = oh(H)2CHHD (4.18)
* (a4 Sint (7271 f)
x [ ety
where
h(H) = —L= 20 (4.19)

(2H +2)(2H +1)

The normalized variance is

ar ij : Ry 2

7 k=0

with N; = 2M~J the number of detail coefficients at level j and 2™ the total length
of the data. Note that here and in the sequel we suppress the dependence on M. The
matrix C7 = (CJ,,) in (4.20) is the covariance matrix of the wavelet coefficients at scale 7,
determined by (4.13), and pgr(k) is the corresponding correlation coefficient, which depends
only on k = |n; — n»| and H. Denote

1\']‘——)00

g(H) = lim v, Z(N k) p2 (k) — 2 (4.21)

then

Var[S;] _ g(H)
ES;P TN

(4.22)

for NV; large. The function g(H) is computed numerically and is shown in Figure 4.12. It
depends only weakly on the value of H, especially when H < 1/2 which is the case of interest
to us. The asymptotic behavior (4.22) holds only when the correlation p%, (k) decays to zero
in an integrable way. This means that the Hurst exponent must be restricted to H < 3/4.
In the Kolmogorov case H = 1/3, the correlation pg decays like k=4/3.
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Figure 4.12: Plot of g(H) showing how the relative variance of the scale spectrum depends
on H.
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Similarly, if H < 3/4, the normalized covariance can be expressed, for fired scale sepa-
ration, as

b = CoSiSal _y Tun(Ch)
e = E[SJEGL] T NN ELS E(S5]

(4.23)

with C71J2 being the cross covariance between the wavelet coefficients at scale j; and j2,
determined by (4.13). The scale spectral points S; are not uncorrelated for different j, as is
sometimes assumed. For the power law parameter estimation we note that for fixed j; and

J2
COU[Sj1 ) Sja] 1

E[S,ES.] ~ /LN,

as Nj, and Nj, go to infinity. These results can be derived using (4.13).

(4.24)

Djlj2

4.7.3 Fluctuation theory for the scale spectra

In the least squares fit of the power law we will need the statistical properties of the logarithm
of the scale spectra. We summarize the relevant facts in this section, with the details given
in Appendix 1.

In the large N; limit, the distribution of the scale spectral points is normal

Vi )
\IZVJ'

v; ~ N(0,9(H))as N; =+

Sj = Sj(1+

with S; = E[S;] = ¢®h(H)2/?H+1) | and where h and g are defined by (4.21) and (4.19),
respectively, and N (u,s?) is the normal distribution with mean p and variance s. The
derivation of these results requires that H < 1/2. The covariance of the fluctuations is

COU[ D]‘i (4.25)

\/_\/—

with Dj; given by (4.24). :
The fluctuations in S; are small and in Appendix 1 we show that this leads to the
asymptotic estimate

log,(S;) =~ log,(S;) (4.26)

\/I\/—ln(Q

In addition to showing that v; is asymptotically normal, we also show in Appendix 1 that
for any j; < j» fixed the random variables v;, 71 < j <'jo are asymptotically jointly normal,
as N; — oo.

4.7.4 Estimators for the power law
Write (4.26) as

log,(S;) =~ logy(a”h(H)) +j(2H +1) + (4.27)

\/_ln

. Uj .
cH+jp+ ————— 1 <J< )
Jp \/N_'Jln(Q) 151>

il
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with the slope p and log intercept ¢ to be estimated from data, and v;//N; a fluctuation
term that is characterized in the large IV; limit by the central limit theorem, as discussed
in the previous section. In view of the above we can then use generalized least squares to
estimate b = [¢,p]7 as

b = (XTD™'Xx)"'XTp 'y (4.28)

with Y = [log,(S;,)," -+, logs(S;,)]T, and where 7y, - -, jo are the scales in the range under
consideration,

the inertial range. The dependence on j;, j» & M has been suppressed. For a discussion of
generalized least squares see Hardle [12]. The design matrix X is defined as

1 n

1 51 +1
X = . )

1 5

The matrix D is the normalized covariance matrix of the spectral points defined in (4.23).
This matrix depends on the value of H. However this dependence is weak so we can use
some rough estimate of H that is usually available, like H = 1/3 for the aerothermal data
of Section 5. In view of (4.27) we find that the estimates of b have means
E[e] = log,(o?h(H)) (4.29)
Ep] = 2H+1

and covariance
Co = (XTD7'XIn(2)*)™! (4.30)

_ In(2)~2 YYDy -xyDpptil 1
DYy Dii—- (XDl - ZEDg i XDt N;

for large Nj,. From the above we arrive at the sought after parameter estimates

B = $p-1)/2 (4.31)
& —log, (h(H)) . (4.32)

log,(0?) =

We next analyze the precision of these estimators. We find that the estimates H and
log,(0?) are normally distributed with variances

Var[H)

——

Var(logy(0?)]

14

Cb(2,2)/4 (4.33)
Co(1,1) — 2Cb(1,2) logy(h(H)) + Cu(2,2) [logs(h(H))]? (4.34)

4

for Nj, large with Cy, defined in (4.30) and h in (4.19). The variance of the estimators is of
order 1/Nj,.

Long-memory processes can also be modeled via state space models. Maximum likelihood
estimators (MLE) for such models are analyzed in Dahlthaus [4] and Fox and Taqqu [8].

4.7.5 Illustration of precision

The above result on the distribution of the estimators may be validated by numerical sim-
ulation. We generate synthetic realizations of fractional Brownian motion with known pa-
rameters. Then we use the above algorithm to estimate these parameters and compare
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the precision of the estimates with the predicted precision. Actually, we do not simulate
fractional Brownian motion but rather the observed sequence (4.12), the approximation co-
efficients at level zero. The synthetic realizations are generated by a simulation algorithm
similar to the one discussed in Omre, Selna and Tjelmeland (23].

In Figure 4.13 we compare the asymptotic law of the estimators with simulations. It
is clear that the theoretical normal distribution predicts accurately the distribution of the
estimators.

Log intercept estimates Exponent estimates
T 2 T
' 1
1 1
1.5 X - Simulation 1.5 I |- Simulation
. —Theory \ |—Theory
1 1 )
1 1
1 1
0.5 : 0.5 1 :
i 1 \\\
0 L o )
0.5 1 1.5 2 0.2 0.3 0.4 0.5
log intercept exponent

Figure 4.13: Distribution of power law parameter estimates. The parameters were estimated
based on realizations of length 2! with H = 1/3 and 0? = 2. The power law fitting is
done over scales 1---5. The solid line is the empirical distribution associated with 1000
realizations, the dashed line is the theoretical distribution and the vertical lines are the
specified parameters.

We show how the variance of the slope estimate p depends on the number of scales in
the linear fit and the total number of data-points in Figure 4.14. The dotted and solid lines
correspond to using respectively scales 1,2,3 and scales 1,2,3,4,5 and Hurst parameter
H = 1/3. The crosses give the Cramer-Rao lower bound (Abry et al. 1995; Wornell and
Oppenheim 1992): 1/(2M+21n?(2)) for the case that the wavelet coefficients are uncorre-
lated. It is seen that only a few scales are needed for the variance of the slope estimator to
be close to the bound.

Variance of slope estimate
T

s L
10° 10* 10 10°
Number of data peints (M)

Figure 4.14: The variance of the slope estimate, computed by (4.33) with H = 1/3, is
plotted as a function of the number of data points 2. The dotted line is for an estimate
with three scales, the solid line with five scales. The crosses correspond to the Cramer-Rao
lower bound. Note that even when the number of data points is not very large the estimate
of the slope does not depend sensitively on the number of scales used.

Note that our objective is estimation of H when H = 1/3 and that our asymptotic
result is valid only when H < 1/2. Several authors (Ninness 1998) have observed that slope
estimators degrade when H become large (H = 1). This is because in that case the wavelet
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coefficients exhibit long range correlations.

In the application of the estimation of the power law parameters to the aerothermal data
in Section 5, which we model by a local fractional Brownian motion, we have to account for
spurious noise effects. This noise affects the small scales mostly. We can make the power
law parameter estimates more robust by letting the weight matrix D in (4.28) depend on
an additive noise parameter which must be adjusted appropriately from rough prior data
analysis. This is done in Section 4.5.2 without a detailed discussion.

4.8 Central limit theorem for scale spectra

In this appendix we derive a central limit theorem for the scale spectral points, S;, and also
the log transformed spectral points log,(S;), where

Z(d (n))?

]n_—

with (d; (n))n_1 the Haar wavelet coefficients of fractional Brownian motion at scale j with
H < 1/2. The total number of data points is 2% and N; = 2M~J. We will consider the
limit N; = oo. This means that M is large and that j is not too close to M, that is, the
central limit theorem will not be valid for the large-scale spectral points S; with j =~ M.
We will use the following version of the Berry-Esseen theorem (Feller [6]).
Let the y; be independent random: variables such that

Ely:] =0, Elyi] = o}, E[ly}l] =

and define

;)1 Zoz, rn—ZpL.

Let F, be the distribution of the normalized sum Y [, y;/sn.
Then for all z and n

|Fa(z) = N(z)] < 62 (4.35)
where N stands for the mean zero, unit variance normal distribution.

4.8.1 Central limit theorem for S;

To use this theorem we will first transform the sum of squares of wavelet coefficients to a
sum of independent random variables. Denote the vector of wavelet coefficients at scale j
by &/ = [d;(1),--,d;(N;)]T and the covariance matrix associated with &’ by C7. Then &’
has the same law as

(Cj)l/‘l[m’ ... ,an]T

and in law

= 1) (4.36)
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where 7; are independent zero mean and unit variance normal random variables, S; = E[Sj]
and X! are the eigenvalues of CV/ S;, that is the correlation matrix of /.
Let

N.
1 S
Y, = 3yl
P UmE”

with y{ = /\{ (n? — 1). Note that the yf are independent random variables such that
Ely]} =0, E[W])*] = 20\)%, ElW])°) < 28(M)° .
According to (4.35) we need only show that
Nj (133
;o= =) (4.37)
(i1 (A )2/

is small for N; large.
Using (4.20) we find that

Nj
Z(Aff = Y (CIn/5;)? = NjVar[S;]/(25}) ~ Nj g(H)/2.  (4.38)

Below we show that
X < K (4.39)

for some constant K > 1 independent of IV;. Hence

N;
S )P < NKEL (4.40)
i=1
From (4.38) and (4.40) we find that
PN 7 1¢:9)
’ IVj

and goes to zero as IN; — co. From the Berry-Esseen theorem we conclude that the distri-
bution of

Ni N2~
Y,/ = Zi:l;\(zl(i?)zlv' 1)]

tends to the standard normal distribution as N; becomes large.
Thus, for Nj large

Sj 5 S'j(]. +€j g—(—r}{z)
N;
in law, with ¢; a standard normal random variable.

Let us now show that the estimate (4.39) is valid. The diagonal entries of the correlation
matrix are all equal to one. By the Gersgorin disc theorem, [\ — 1| <37, |Cin|/C11. But
the sum remains finite as N; — co because we have assumed that H < 1/2 and so we can

use (4.17). Rewriting this inequality with /\{ on the left side we get (4.39).
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4.8.2 Central limit theorem for log,(S;)

We consider next a central limit theorem for log,[S;]. As in (4.36) we write the scale
spectrum in terms of centered random variables Y}

Y;
VI

Taking logs and expanding in a Taylor expansion with remainder we get

S; :-“S(l—}- ).

_ Y?
1 5 S = 1 S ,]
082(5) o8 \/Iw—lno 2§(Y;)?NjIn2

with
£(Y;) € <1,1+Y;/\/N;> whenY; >0,
! <1+Y;/\/N;,1> whenY;<0.

We showed above that the central limit theorem holds for Y;. We show below that Y /(2¢(Y;)
is O(1) as Nj = oo. We therefore, have a central limit theorem for log, (S;) as well
By the Cauchy-Schwarz inequality

2

J = E Y)2 < VEEE) B .

We show that J; = O(1) as N; — co. Consider first E[Y}]. Using (4.39) we find

it

E[(Zf\:—fl )\‘}% - 1)])4]

KY(NE[(nf = 1)*] + N;(N; = DBE*[(n} — 1)*])/N} = c1 +c2/N;

E[v}]

IN

with ¢; constants. Next consider

E[E(Y;)™"] < EE(Y;) y,<0)] + 1
E[1+Y;/V/Nj) " iy;<0)] +1
with I4 the indicator function of the set A. In order to bound I; we replace 1 +Y;/\/N;

by Z; such that w.p.1 Z; < (1 +Y;/\/N;).
Note that

I;

IA

N; j 2
7 o1 A7
1+Yj/ /]\,j —_ ;—;1{7];_

and that )", N M = Nj, which is the trace of the correlation matrix for di. Let ¢ be the
number of elgenvalues that exceed 1/2. In view of (1.39) we find

g > N; = N;2K-1)"! = NjK.

Thus, we can define Z; as

-j -9 r- \7
1y _ Ky
2 ]Vj 2 ‘/Vj




Hence

with

Yiaw)(T) = ;O([I)/; 27 exp(—az)

with parameters @ = 1/2 and v = Nj/Q. It follows that for Nj > 10

(@)'T(v—4) _ !
@FTE) (-2, ~ O~ (N, - 8)

E[Z7Y

L

Hence, I; < K" and
J; < A/K"(ci/Nj+e) < K
for N; > 10/K.

From the above we conclude that for N; large

= H
l0g,(S;) = 10ga(55) + ey i b
Yy

in law, with ¢; a standard normal random variable.

4.8.3 Joint density of spectral points

We show that the spectral points are asymptotically, as N; — oo, jointly normal. From
this follows that the central limit theorem holds also for the power law parameter estimates.
Consider the distribution of ¥ = a1S5;, + @25, with a1 # 0 & a2 # 0 and j; < j» fixed
parameters. The central limit theorem for this quantity can be shown essentially as in
Section 4.8.1. Let d/* and d’ be the vectors of wavelet coefficients at the two scales. Define

di
d = [ djz ]

and d = Dd with D a diagonal matrix whose first IV;, elements equal a; and last Ny,
elements equal a»272771, Then

Y = JT(j/jle .

By a transformation to independent variables and an application of the Berry-Esseen theo-
rem we find, as in (4.37), that we need to show

Tt
= Z=lo (4.41)
(I (P

i=1
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is small for Nj, large. Here \; are the eigenvalues of Cou(d) = DCD with C the covariance
matrix of d. Note first that from (4.20) it follows that

Njy +N;,
oA > (@)Y (C) ~ (an)*N;(S5) g(H)/2
i=1 n,m

Hence. (4.41) follows if we can bound A; uniformly with a bound independent of N;,. We
find, using (4.13) and the Gersgorin disc theorem, that for some constant L and 1 < j < N,

|Aj —a1S;,] < LS,

since the rows of C are absolutely and uniformly summable with a bound that is independent
of Nj,. Hence \; £ LSj, for some constant L. A similar argument holds for N; < j <
Nj, + Nj,. Therefore, (4.41) and the central limit theorem for ¥~ follows.
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Chapter 5

Spectral Analysis

5.1 Introduction

For a segmentation with segment length T and sample interval At, the measurable frequency
range is 27 /T < w < w/At, which corresponds to the scale range T to At. While A is usually
dictated by the intrinsic bandwidth of the process being sampled or the instrumentation,
the choice of T' has always been somewhat arbitrary. The SpecLab procedure relies on
matching scale spectra to a power-law model. In principle, standard spectral analysis could
have been used, but there are compelling reasons to use scale spectra for this purpose. The
material in this chapter has two objectives. The first is to demonstrate the problems that
are encountered when standard spectral analysis procedures are applied to fBm. The second
is to provide guidlines for translating the SpecLab structure function and Hurst exponent
to spectral strength and power-law index.
To introduce the analysis consider a stationary power-law process that has an outer scale.
In that case both the autocorrelation function and the spectral density function are well
defined. Furthermore, the process itself admits a spectral decomposition. There is a wealth
of material that describes standard analysis procedures that can be applied using discrete
Fourier transforms (DFTs) to estimate the spectral density function (SDF). For reference,
the essential elements of this material for our purposes are summarized in Section 5.2. The
development in Section 5.2.2 shows that the structure function of a stationary power-law
process admits the following limiting form for large outer scale:
f §2—v
D(y) = %F(((g:;))rf,zim |yly_1
=02y (5.1)

The relation is valid for 1 < v < 3 over the y range of scales that encompass the power-law
segment. The unbounded power-law form of D(y) does not have a Fourier transform, but
(5.1) implies the following scale-free relation between the structure constant o> and the

spectral strength parameter C":

2—v
2 CT(@E-v)/22 652)
Vi W-DIw/?)

If the process is obtained from a probe sampling a two- or three-dimensional process
via translation and path integration, additional scale-free transformations relate the one-
dimensional parameters to an appropriate scale free characterizations of the actual medium.
In the remainder of this Chapter we first calculate the bias characteristics of the standard
periodogram estimator when applied to fBm as opposed to a realizations of a stationary
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process. The results show that the non-stationary characteristics of {Bm introduce a more
severe bias that is encountered with stationary processes. Furthermore, that bias will defeat
attempts to estimate the spectral slope independent of the spectral strength. We then show
that for the Haar wavelet applied to fBm the relation (5.2) is exact. The combination of
these two observations strongly support the wavelet-based analysis.

5.1.1 Periodogram Bias for fBm

Consider the periodogram estimator P, = |z,|* /N, where 2, is the discrete Fourier trans-
form of a stationary process. The development in Section 5.2.2, suggests that E [P,] ~
Cw™"/At. To test this conjecture, the expectation of the periodogrm can be computed
from the defining properties of fBm. With some straightforward manipulations, it follows
from the definition of the DFT and the fBm covariance function that

E [z /] = o* (T 20,
+o? Zf,f;é (1 = |m| /N)m2H cos(2minm/N). (5.3)

Figures 5.1 shows the result of averaging 10 periodogram estimates from independent 2!>
point fBm realizations with H = 1/3. Superimposed on the averaged periodograms is the
expectation derived from (5.3) with 02 = 27245 where d is the dyadic dimension and &, is
the Dirac delta function. The nominal power-law with C derived from (5.2) has also been
overlaid on the periodogram plot. We note first that the averaged periodogram agrees well
with the expectation up to the highest frequencies. The departure comes from a small
modification of the fBm process introduced to represent integration over the sample period
rather than instantaneous sampling. More important, although the expectation appears to
be reasonably power-law in form, the deviation from ideal power-law is frequency dependent
and varies with the Hurst exponent. This behavior would not be expected for stationary
processes as summarized in Section in 5.2.2.

5.1.2 Wavelets and Scale Spectra

Wavelet analysis has received considerable attention over the past decade, particularly with
the discovery by Mallat [38] of the intimate relation between multiresolution filtering and
wavelet decompositions. The book “Wavelets and Filter Banks” by Strang and Nguyen[39]
covers the material in detail.

Continuous Wavelelt Transforms

The continuous wavelet transform (CWT) of z(t') is defined as

Fo(s,7) = /Z z(t')%w(t, —)ar, (5.4)

where w(t) is the “mother” wavelet. The parameter s is a scale parameter akin to period
(1/f) while 7 locates the region where the scale information is extracted. To interpret
(5.4), assume that z(t) admits a spectral representation of the form

z(t) =/\/Q(w) exp{iwt}d((w), (5.5)
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Hurst Exponent =0.33333
T

-~ Periodogram
- Expectation
— Power Law

Figure 5.1: Average of periodograms from 10 independent realizations of fBm for H = 1/3.
The magenta curve is the expectation value of each frequency. The blue curve is the ideal
power-law.

where d((w) has the formal “white-noise” property E [d((w)d(* (w")] = §(w—w')/(27). The
well-known Fourier-transform relation

dw

5 (5.6)

Ela(t)a(t)] = / Q(w) expliw(t - )}

follows from the white-noise property. Substituting (3.5) into (5.4) gives an equivalent
spectral-domain representation of the CWT:

Fu(s,7) = /—00 V/5Q(w) ™ (sw) exp{iwr}d((w). (5.7)
Exploiting the white-noise property as before generates the r-independent scale spectrum
B[R 0] = [ Qustatsal® o (5.9

For a power-law process spectrum
E[|Fw(s,7)|’~’] - (/_Z |~ |5 (w)] i;%) Csv. (5.9)

Since s o 1/w, the wavelet scale spectrum, unlike the fft-based estimator, evidently extracts

the correct power-law form. Wavelets have the property that they integrate to zero, which

implies that limoﬁi(sw) = 0. Thus, with an appropriate wavelet choice, the bias term may
w—

remain finite in spite of the singular behavior of the power-law w = 0. Ninness [40] and Abry
et al.[1] have shown independently that the expectation of the scale spectrum for an fBm
process does have the scale-free property implied by (5.9).



Discrete Wavelet Transforms
The discrete wavelet transform (DWT) is obtained by taking t = kAt and s = 2/71A¢,
whereby

&l = F, (2771 At kAL) = thw((t' /At — k) /2771 dt'. (5.10)

)L

It is very inefficient to evaluate (5.4) by direct numerical integration, but following Mal-
lat’s {38] discovery of the intimate relation between multiresolution filtering and wavelet
decompositions, the DWT can be computed efficiently without explicit use of the wavelet
or the scale-function that generates it. Two sets of filter coefficients are applied recursively
with downsampling to generate a wavelet scale decomposition that approximates (5.4) at
logarithmically spaced scales. The results summarized here are developed in detail in the
textbook by Strang and Nguyen [39].

Each wavelet has characteristics that strongly affect its applications. The MatLab
Wavelet Tool Box provides a family of wavelets that are defined by orthogonal low- and high-
pass filter coefficients Lo_Dp, and Hi_D,, that can be generated by the function orthfilt.
Both filters have L wavelet-dependent coefficients. The downsampled low-pass filter output
at level (scale) j generates approximation coefficients aj, while the high-pass filter generates
the corresponding detail coefficients dJ, that form the DWT. The recursion is initiated at
level 0 with the data samples:

ad =z for k=0,1,---,N -1, (5.11)
With N =2M for j=1,---,M, the recursive filtering and downsampling operations are
defined as
; L-1
a, = Z Lo_Dmaq(m) (5.12)
d = mZOHz_Dmaq(m), (5.13)

where g(m) = 2k — (m — 1) + « identifies the scale sample from the previous level that is
multiplied by the mth filter coefficient. The 2k increment accounts for the downsampling.
The offset « is a phase factor that determines where the current filter output is referenced.
The recursion is not completely specified until the procedures for accommodating the first
L — 1 and the last L — 1 samples are specified. The default MatLab procedure is to affix
L — 1 leading and trailing zeros to the data set. As a consequence, the approximation and
detail coefficient vectors at level j = 1 are of length Lp(1) =floor [(2™ + (L — 1))/2], where
floor[.] means the largest integer not exceeding the number in the brackets. The length of
the detail coefficient vector for j > 1, as can be verified upon e*cecutmg the MatLab Wavelet
Tool Box wavedec routine, is

Lp(j) :ﬂoor[(QM +

Note that Lp(j) > La(j) = 27, where Lj;(j) is the nominal length of the data vector
after downsampling. The orthogonality of the filters implies the norm preserving relation

5

k=0

(L -1)(27 - 1))/27]. (5.14)

@, i Lo(m)
(ai,) + Z (di)” . (5.15)

0 m=1 k=0

?“lv
]
U
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The wavelet scale spectrum is obtained by summing the intensity of a truncated set of the
coefficients at each scale:

1 Lp(j)

N2 ;

with U, ,{ symmetrically zero at the leading and trailing edge of the d{, vector to reduce its
contributing length to Las(j).

5.1.3 The Haar Wavelet

Because the properties of fBm are defined in terms of its covariance function, we proceeds
from relations such as (5.10) or (5.12) and (5.13). Closed-form solutions are difficult to
come by, but the Haar wavelet has a particularly simple form:

_ 1 for0<t<1/2
WHaar () = { -1 forlj2<t<1’ (5.17)
Substituting the Haar wavelet into (5.4) for example, yields
(s,7) / z(u+71) —z(u+ 1+ 5/2)] du. (5.18)
\/_
Computation of the expectation of the scale spectrum is straightforward:
E [|Fw(s,r)|2] =g [ [|u — '~ 1/2P
Flu—u + 172~ 2 - u'[”’] dudu!s?H+1 (5.19)

Carrying out the integrations and using the equivalence between (5.10) and (5.13) shows

that
] -

2 1 — 2 —2H 2j(2H+l) (5 20)
(2H +2)(2H + 1) '

One can also show that
o sin(w/4)

0 5.21
| (w)] (/1) (5.21)
Thus, from (5.9) the following equivalent expression involving the spectral strength param-
eter is obtained:
9D o0
il” _ (2H4+1) sin ((AJ/4) dw 2]("H+1 = 99
pllaf ] = ([ wrer S o (5.2

Equating (5.20) and (5.22) gives an exact relation that defines o2 /C:

% _(2H+1) Sin (w/4 Jdw\ 1—9-2H ]
C([_w| I (w/4) 271‘) =7 (2H +2)(2H + 1) (5.23)

Mathematica (courtesy of Raul Martinez at Vista) produced the following solution, which
is evidently valid at H = 0:

oo —(2H+1 in‘*!w[«l) )
(f_oo |w] (ZH+ S(u/4)‘ i)i_w) =
1/12 H=1/2
_ 0<=H<1/2 (5.24)
°H _ _
2(2 1) cos(Hm)T(-2(1 + H)) 1/2< H<1
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Figure 5.2: Average of wavelet scale spectra from 10 independent realizations of fBm for
H =1/3. The magenta curve is the expectation value for each scale converted to frequency.
The blue curve is the ideal power-law.

Substituting from (5.2) for ¢?/C provides what we might expect to be an approximate
relation:

© _ogay sint(w/4)dw)  DA-H)2"MH 197 ]
(/_oo . (w/4)? 7) T VmHT(H +1/2) (2H + 2)(2H + 1)’ (5.25)

Figure 5.2 shows the raw scale spectra derived from fBm. The coefficients are plotted
as red asterisks at the frequencies wyyquist/ 2i=1. The solid red curve shows the theoret-
ical expectation value derived from (5.20). The blue asterisks have the bias removed by
using (5.23). The continuous blue curve is the theoretical SDF. In sharp contrast to the
periodogram estimator, the scale spectrum captures the power-law. The offset from the
ideal power law depends only on the Hurst exponent and is easily compensate. The scale
spectrum removes the noise fluctuation without biasing the power-law index. Note that the
norm preserving relation is of little use in calibrating the strength scale because it contains
a non-stationary contribution from the average wavelet coefficients.



5.2 Background

The following material summarizes basic relations that are used in ScaleSpec.

5.2.1 Discrete Fourier Transforms

For a sequence of complex numbers z(k) where 0 < & < N —1 the discrete Fourier transform
(DFT) and its inverse, as evaluated by the MatLab functions fft and ifft are defined as
follows:

Z(n) Zk -0 z(k)exp{ 2wink/N} (5.26)
z(k) = NZn -0 ' Z(n) exp{2rink/N} (5.27)
The Parseval relation
N—-1 N-1
(k)| Z |2(n)|? (5.28)
k=0 n=0

is readily derived from (5.26) or (5.27).
If z(t) and Z(w) are related via the continuous Fourier and inverse Fourier transforma-
tions

Tw) = [ z(t) exp{—iwt}dt (5.29)
z(t) = [ F(w)exp{iwt}E2, (5.30)

it can be shown that zp(kAt)/At and Zp(nAw)(27/Aw) form an exact discrete Fourier
transform pair. The periodic or “aliased” form of the continuous functions are defined as

zp(z) = ozt +mT) (5.31)
Tpw) =3 o T(w+27m/At) (5.32)

where At = T/N and Aw = 27/T, whereby AtAw = 27/N. The sampled functions
themselves are the tapezoidal-sum approximations to the corresponding integrals. For a
continuous Fourier transform pair, one chooses At and N so that the intervals —7/2 <t <
T/2 and —7 /At < w < /At contain the essential content of the corresponding function and
its Fourier transform. The fact that natural reference for the functions is ¢t =0 or w = 0,
whereas the discrete transforms place zero at the beginning of the interval establishes the
need for a cyclic shift routine, which MatLab provides as fftshift.

5.2.2 Stationary Processes

A stationary stochastic process admits a spectral representation of the form

- /_ " O expliwt) dC(w), (5.33)

where d((w) has the formal “white-noise” property E[d((w) d(*(w')] = §(w — ')/(27).
With t = kAt, it follows from (5.26) that

F(nAw) = /_ NG 11_‘:‘:;’{{1@(:} __r;ii)))}}dC(w). (5.34)
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The raw periodogram estimator is defined as
P, = |Z,)* /N. (5.35)
The expectation of the periodogram is readily computed by using the white-noise property:

sin (

B[l /V] = & 72, Q) e Eerte)
~ Q(nAw)/At. (5.36)

The approximation holds for large V. Note that DFTs satisfy the Parseval relation

1 N-1 N-1
-~ 12 y -
DICHED I (5.37)
n=0 k=0

Upon taking expectations and using, (5.36) we find that

N-—1
> Qndw)/At = N (z?) (5.38)
n=0
or
N~
Z nL\w = (2*). (5.39)

That is, in expectation for large N the sum of the periodogram estimator is the discrete
approximation to the corresponding integral relation for the SDF of a stationary process.

Power SDFs and Structure Functions

The follow SDF form is often used because it admits both a power-law regime and an
analytic inverse[41]

1-v/2 ~v/2 —u/2
Q(w>=c[2 (9:01) } Tl K (LVTFGE) . (540

I(v/2)

We will now use this form to develop a relation between the structure constant and the
spectral strength parameter. For small arguments K, (z) = (1/2)T'(v) ]z:/2|_i"|. Thus, as
long as q; << w << gs and qr/gs << 1 (5.40) has the desired power-law form

QW) = Cw™. (5.41)

This “self-similar” Fourier transform is

C 1 5 S(v—1)/2 p - v—1 -
R(y) = Zra 0t VT +(qry) Ko-np(Vr+(@wy)d/a =, (542)
where R(y) = E [z(t)z*(¢')] and
T =qr/qs.
Unlike the SDF, the covariance function does admit a scale free power-law form. Consider

that,
C T'((v-1)/2)

Eljz]’) = R(0) ~ NP
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which is dominated by the outer-scale wavenumber through the factor ¢} ~".
The coherence properties of power-law process with v > 1 are better characterized by

the structure function

D(y) = Efjz(t) — =(t)°] = 2(R(0) - R(y)) (5.43)
2C N

X [1 =V (@) T K ey (VP (‘IL?/)Q)/N] la; ", (5.44)

where
N =rt+0 K, gy (r) = T((v - 1)/2)2070/2, (5.45)

The term in square brackets converges to zero as g;, approaches zero. Thus, an application
of LHopital’s rule yields the asymptotic approximation

~ C T((B-v)/2)2%"¥ | -1
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SpecLab-Scripts

A-1Filt_Par

Prediction of a process (s).

Model:
y=s+n=sm+sr +n
n - white noise (not stationary)
s=sm+sr with sm (constant) mean value
Usage:

function sp=Filt_Par(ind,y,vs,vn,1)

Input: y ~ the observations
ind - argument vector (in sampling units)
vs - variance of sr (sr being zero mean)
vn - variance of ’measurement noise’ n
1 -~ correlation range of sr in sampling units

(sr stationary, n white not stationary)

Qutput: sp =~ filtered version of y (prediction of s)

A-2GetParproc

Estimates and returns the power law parameter processes

column vector
"

scalar

column vector

scalar

given the segmentation, the scale spectra in the (spatial) segments

and the estimates of the inertial range.

Usage

P=ScaleSpec(Z)
Input

Z - Matlab data structure containing spectra

and inertial ranges. Initialized by InitSpec,

- ScaleSpec and InertialSpec (see also InitZ).
Qutput

P - The estimated parameter process

See Also: ScaleSpec ScfiltSpec SynthSpec

A-3GetVario

The variogram of the input process is estimated interactively.

Usage
(intcept 1 v]=GetVario(y,titles)
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Input

y - the input data vector
titles - title string
Output
1 - estimate of the correlation range
v - estimate of the variance
intcept -~ estimate of the intercept
See Also: VarioSpec VarioEst

A-3Get_Inertial

Estimates the inertial ranges given the scale spectra
in the set of segments and the length of the data vector
from which the scale spectra have been computed.

The estimation is done by comparing deviation of the log scale

spectrum from a linear log spectrum with the mean value

of this measure for Brownian motion.

second index to

Usage
[inertiall=Get_Inertial(scspect,dyad);
Inputs
scspect - the set of scale spectra (#seg by #scales vector)
dyad - dyadic dimension of original data vector
Outputs
inertial - the inertial ranges (#seg by 2 vector)
See Also: InertialSpec
Parameters:
Refres % This matrix is stored on file: Refres
and contains the measure of deviation
for Brownian motion.
Dimensions is maxdyad by maxdyad with first index
corresponding to dyadic dimension and
size of inertial range.
mins % Minimum number of scales in inertial range (> 1)

A-3HelpSpec

Gives online help for the main menu SpecLab options

Usage

HelpSpec

See Also:

Main



The fields of Z are:

data - the data vector
wavec & wavel - ¢ & 1 from wavedec (length of data is 1l(length(l) )
nseg - number of (uniform) segments
in segmentation (scalar)
scspect - scale spectrum

(nseg by m array; [short to long scales];
note that m is number of scales stored in
wavec, which is ‘length(wavel)-2’).

inertial - inner and outer scales in the segments
(nseg by 2 array; [inner outer])

parproc - the exponent and intercept estimates in segments
(nseg by 2 array; [H interc])

filtpar - parameters used in filtering of parproc

(1 by 6 array;

[intceptH varH corrlengthH ...

intceptLogInt varLogInt corrlengthLogInt])
filtparproc - filtered parameter process
trueparproc - true parameter process (if process is simulated)

See Also: SpecLab Main

A-3Linreg

Estimates the power law parameters for the scale spectrum.
Usage
[mspect,c,H]=Linreg(spect,low,high)

Input
spect - scale spectrum (column vector)
low high - inertial range used in estimation
Cutput
mspect - estimated model spectrum
c - estimated log intercept
H - estimated Hurst expomnent

See Also: ProcSpec

A-3Main

Main is part of Speclab’s GUI driven interface that allows the user
to apply the components of SpecLab.

Main presents the user with the main menu that allow him or her

to apply the different estimation or plotting capabilities

of SpeclLab. These are implemented by intermediate level

routines that call Speclab’s basic or tool routines.
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Usage
Z=Main(Z)

Output
Z - Matlab data structure conaining the analyzed
process and its spectral information
(see InitZ for format).

See Also: SpecLab Z HelpSpec InertialSpec ProcSpec ScaleSpec
ScfiltSpec SmoothSpec SynthSpec VarioSpec

A-3MakeRefres

Computes the percentail of the residual of the scale spectrum relative to
the estimated linear model for various dyadic lengths of data

and sizes of the scale range. Result is used when inertial range is
estimated.

Usage
MakeRefres

Outputs
The matrix Refres is stored on the file Refres
with storage format (ascii). Refres is a maxdyad by maxdyad
array reshaped to linear form for storage.

See Also: Get_Inertial

Parameter

A-3ProcSpec

Estimates plots and returns the power law parameter processes
given the segmentation, the scale spectra in the (spatial) segments
and the estimates of the inertial range.

Usage
Z=ScaleSpec(Z)
Input
Z - Matlab data structure containing spectra
and inertial ranges. Initialized by InitSpec,
ScaleSpec and InertialSpec (see also InitZ).
Qutput
yA - The input Matlab data structure with

the parameter processes added.

See Also: Main
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A-3ReadSpec

Reads data vector

Usage
[Z,path]=ReadSpec (mode)
Inputs
mode - Type of data input
1: binary
2: ascii
Output
Z - Speclab data structure
path - path is 0 if no file was read

See Also:  Speclab initZ getdat

A-3ScaleSpec

Computes plots and returns the wavelet scale spectrum
given the data and its wavelet decomposition. The
user can choose the number of segments in a uniform
segmentation of the data.

Usage
Z=ScaleSpec(Z)
Input
Y/ - Matlab data structure containing data vector and
its wavelet decomposition. Initialized
by InitSpec (see also InitZ).
Output
Z - Matlab data structure that contains scale filtered

data, its wavelet transform, the chosen segmentation

and scale spectra in segments.

See Also Main

A-3Scale_Filt

Low pass scale filtering of data
Usage

[X,c,1]=scale_filt(c,l,inner);
Inputs
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c,1l - wavelet transform obtained from wavedec

inner - the inner scale used in filtering
Outputs

c,1l - low pass truncated wavelet transform

X - low pass filtered data

See Also: ScfiltSpec

A-3ScfiltSpec

Scale filters data, plots them
and returns data-structure with spectral information.

Usage
Z=InitSpec(Z)
Inputs
Z - Data structure containing spectral information
(see InitZ for format).
Output
Z - Matlab data structure that contains a scale filtered

version of input data.

See Also: Main

A-35egSim

Simulates a locally stationary power law
Usage
[z]=SegSim(dyad,pv,iv)
Inputs
dyad - dyadic dimension of simulation grid
pv - Hurst process
iv - log intercept process

Outputs
z - the simulated process (2°dyad by 1 vector)

See Also: SynthSpec

A-3SimExp
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Simulates the locally stationary power law parameters.
The model is a truncated Gaussian exponentially correlated
stochastic process.

Usage
[pv,iv]=SimExp(dyad,dyadl,Hm,Hs,Is,mode)
Inputs
dyad - dyadic dimension of parameter process
dyadl - dyadic dimension of corrlation length
Hm - mean of Hurst parameter
Hs - relative fluctuations in Hurst parameter
Is - relative fluctuations in log intercept
mode - optinal parameter
mode : 1 - Triangular
2 - Gaussian correlation
3 - Exponential correlation
Outputs

pv - Hurst process
iv - log intercept process

See Also: SynthSpec

A-3SmoothSpec

The power law parameter estimates are smoothed according
to the model estimated for their stochastic variatiomns.

The smoothed are plotted optionally with the unsmoothed

versions.

Usage
Z=SmoothSpec(Z)
Input
Z - Matlab data structure containing
the (unfiltered) parameter processes and
variogram parameters for their spatial variation,
(see also InitZ).
Cutput
Y/ - The input Matlab data structure with
the smoothed parameter processes added.
See Also: Main
A-3SpecLab

SpeclLab is an GUI driven interface that allows the user
to apply the components of SpeclLab to a set of test
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data sets or to simulated data sets whose parameters are
determined by the user. The user can alternatively load

his own dataset.

Using the GUI interface the user can estimate a Local Power
Law model for the data and also plot the dataset or

its spectrum in various ways.

Usage
Z=SpeclLab

Output
Z - Matlab data structure conaining the analyzed
process and its spectral information
(see InitZ for format).

See Also InitZ Main

A-3Spect

Computes the wavelet scale spectrum
given the wavelet decomposition and the number of
segments in a uniform segmentation of the data.

Usage

[scspect]=Spect(c,1l,nseg)
Input

c& 1l - ¢ & 1 from wavedec

nseg - number of (uniform) segments

in segmentation (scalar)

Output

scspect - scale spectrum

(nseg by m array; [short to long scales];
note that m is number of scales stored in
¢, which is ‘length(1)-2’).

See Also: ScaleSpec ScfiltSpec SynthSpec

A-3SynthSpec

Simulates a locally stationary power law.

The user specify the power law parameters from a simple model.
The intercept and Hurst exponent of the power law are taken to
be realizations of a stochastic process.

Also inner and outer scales are specified.

First a pure power law is simulated. Information

in scales beyond the inertial range is then tapered.
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Usage
[Z]=SynthSpec

Output
Z - Matlab data structure containing the simulated data
vector and its spectral information
(see InitZ for information about the fields).
See Also: main
A-3Taper

Tapers the locally stationary power law according to
inner and outer scales with Gaussian tapering.

Usage
[z]=Taper(z, ins,outs)
Inputs
z - the process
ins - the inner scale
outs - the outer scale
Qutputs

z - the tapered process

See Also: SynthSpec

A-3VarioEst

Computes the variogram of the input process
and fit it to a vertically shifted exponential model using least squares.

Usage
[intcept 1 v vario]=VarioEst(y,maxlag);

Inputs

y - process for which the variogram is computed

maxlag - the maximum lag for which the variogram is computed
Outputs

intcept - estimated intercept

1 - estimated correlation length

v - " variance

The fitted variogram model is: intcept+v*(1-exp(-x/1))
vario - the empirical variogram of y

See Also:  GetVario regmodel

A-3VarioSpec

66



Estimates the variogram or structure function of the
the power law parameter processes. The estimate
can interactively be modified by the user.

Usage
[Z]=VarioSpec(Z);
Input
YA - Matlab data structure containing
the (unfiltered) parameter processes,
(see also InitZ).
Output
YA - The input Matlab data structure with

the variogram parameters added.

See Also Main

A-3WriteSpec

Reads data vector

Usage
WriteSpec(Z)
Inputs
Z - Matlab data structure with process

(see InitZ for format)

See Also: main InitZ writedat

A-3aero

This workout illustrates how the figures in the paper:
Wavelet based estimation of local Kolmogorov turbulence
by George Papanicolaou and

Knut Solna

can be generated using Speclab. It also serves as an introduction
to Speclab itself.

Usage
Z=aero

Output: Z - data structure with aerothermal data
(see InitZ for format)

See Also: Speclab InitZ



A-3displayP

Plots the power law parameter processes

Usage
displayP(Z,mode)

Inputs
YA - Data structure containing data and spectral information
mode - type of plot

1 : Plot unsmoothed parameters
2 : Plot smoothed and unsmoothed parameters
3 : Plot smoothed parameters

See Also: Main InitZ ProcSpec SmoothSpec

A-3displayS

Plots the set of scale spectra

Usage
displayS(scspect,N,mode,inertial)
Inputs
scspect - scale spectrum
(nseg by m array; [short to long scales];
with m the number of scales and nseg the
number of spatial segments.
N - length of data vector on which the scale
spectrum is based.
mode - type of plot:
1 - color image
2 - graphs

3 - color image with inertial range
4 - graphs with inertial range
inertial - inner and outer scales in the segments
(nseg by 2 array; [inner outer])

See Also: Main InertialSpec ScaleSpec SynthSpec

A-3displaySyn

Plots simulated process and parameters

Usage
displaySyn(X,pv,iv)

Inputs
X - simulated process
pv - the Hurst process
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iv - the log intercept process

See Also: Main SynthSpec

A-3displayVario

Plots variogram

Usage
displayVario(model,vario,titles)

Inputs

model - model variogram

vario - empirical variogram

intcept - the itercept of the variogram
titles -~ the title string

See Also: Main GetVario

A-3displayW

Plots level of detail coefficients
Usage

displayW(c,1)
Inputs

c,l - Wavelet decomposition

See Also: Main ScfiltSpec

A-3displayX

Plots data vector
Usage
displayX(X,titlestr)
Inputs
X - The data
titlestr - title of plot

See Also: Main ScfiltSpec

A-3getdat

Reads data vector
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Usage
(Z,path]=getdat(filen,path,mind)

Inputs
filen - file name
path - path
mind - minimum dyadic length of data-vector
mode -
1: binary
2: ascii
Qutput
yA - Data vector
path - path is 0 if no vector was read

See Also ReadSpec InitZ

A-3hfunc

Computes the function h(H) that is involved in the definition of
the mean and variance of scale spectral points.

Usage
h=hfunc (H)
Input: H - the Hurst exponent
Qutput h(H) - scaling factor for mean and variance

of scalespectral points.

See Also: Linreg

A-3regmodel

Gives model variogram or structure function

Usage
y=regmodel(beta,x);
Inputs
beta - correlation length
X - lag
Outputs
y - value of variogram
See Also: VarioEst

A-3showinput



Shows the input menu with a paricular entry marked

Usage

showinput (opt)
Input:

opt - the menu entry that is to be illustrated next
See Also:  aero

A-3showmenu

Shows the main menu with a paricular entry marked

Usage
showmenu (opt)
Input:
opt - the menu entry that is to be illustrated next
See Also: aero
A-3sim_ob

Simulates OBSERVED fBm

The process is scaled so that the value of the
structure function at maximum lag (lag=2"d) is 1

and condition on the process being zero at

the ’zero’th value of the index.

The measurement model corresponds to the observations
being integrals of the fBm over unit intervals.

Input : d - dyadic dimension
H - Hurst exponent!
Output: =xold - Simulated sequence (2°d by 1 vector)

Parameters: D - dyadic dimension of supergrid in simulation
1 - parameter that determines the SIZE
of the conditioning set in the simulation.
(simulation ACCURACY and also TIME
increases with the value of these
two parameters). Note paremeters
need to satisfy 2°D > 2x%1 > 2.



A-3simcoef

Computes coefficients used by sim_ob in the simulation
of observed fBm.

Input : nl,n2 - dimensions of conditioning sets
del - lag between conditioning nodes
H - the Hurst coefficient
Output: «c1,c2 - c1,c2 coefficients of conditioning nodes
s - conditional standard deviation of simulation
node.

See Also: sim_ob
A-3vfunc

Computes the value of the structure

function for fBm assuming a measurement

model where integrals of B over unit intervals
are observed. (value computed assuming \sigma~2=1)

Useage: function v=vfunc(lag,H)
Input: H - the Hurst exponent
lag - separation distance at which structure
function is computed (NB an integer)
OQutput v - value of structure function
See Also: simcoef sim_ob

A-3writedat

Writes data vector

Usage
[(path]=writedat(filen,path,Z)
Inputs
filen - file name
path -~ path
Z - Matlab data structure with process
(see InitZ for format)
Qutput
path - path=0 if file not propely written

See Also: WriteSpec InitZ
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